Kernel random matrices of large concentrated data: the example of GAN-generated images - CICS
Communication Dans Un Congrès Année : 2019

Kernel random matrices of large concentrated data: the example of GAN-generated images

Résumé

Based on recent random matrix advances in the analysis of kernel methods for classification and clustering, this paper proposes the study of large kernel methods for a wide class of random inputs, i.e., concentrated data, which are more generic than Gaussian mixtures. The concentration assumption is motivated by the fact that one can use generative models to design complex data structures, through Lipschitz-ally transformed concentrated vectors (e.g., Gaussian) which remain concentrated vectors. Applied to spectral clustering, we demonstrate that our theoretical findings closely match the behavior of large kernel matrices, when considering the fed-in data as CNN representations of GAN-generated images (i.e., concentrated vectors by design).
Fichier principal
Vignette du fichier
2019Cicassp.pdf (3.04 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02971224 , version 1 (19-10-2020)

Identifiants

Citer

Mohamed El Amine Seddik, Mohamed Tamaazousti, Romain Couillet. Kernel random matrices of large concentrated data: the example of GAN-generated images. ICASSP 2019 - IEEE International Conference on Acoustics, Speech and Signal Processing, May 2019, Brighton, United Kingdom. ⟨10.1109/ICASSP.2019.8683333⟩. ⟨hal-02971224⟩
171 Consultations
196 Téléchargements

Altmetric

Partager

More