Construction des intégrateurs pseudo-géométriques - Laboratoire des Sciences de l'Ingénieur pour l'Environnement Access content directly
Proceedings Year : 2022

Construction des intégrateurs pseudo-géométriques

Abstract

Dans cet article on considère le problème de conception des intégrateurs géométriques-les schémas numériques préservant une structure géométrique associée aux équations de la dynamique d'un système mécanique. En particulier on étudie les cas où la préservation de la structure de manière exacte en discrétisation n'est pas possible ou elle est déraisonnablement compliquée techniquement même à petit ordre du schéma. Dans ces cas les méthodes habituelles d'amélioration d'ordre ne marchent pas-on introduit donc les intégrateurs pseudo-géométriques qui le font de manière approchée avec une combinaison des méthodes de type Runge-Kutta pour les di érentes variables du système. L'exemple principal qui a motivé cette construction sont les structures de Dirac pour les systèmes avec les contraintes (liaisons holonomes ou non-holonomes), mais le domaine d'application est potentiellement beaucoup plus conséquent.
Fichier principal
Vignette du fichier
CFM_DL.pdf (483.22 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03782512 , version 1 (21-09-2022)

Identifiers

  • HAL Id : hal-03782512 , version 1

Cite

D Loziienko, A Hamdouni, V Salnikov. Construction des intégrateurs pseudo-géométriques. 2022. ⟨hal-03782512⟩
9 View
5 Download

Share

Gmail Facebook Twitter LinkedIn More