Communication Dans Un Congrès Année : 2017

Cell Trajectory Clustering: Towards the Automated Identification of Morphogenetic Fields in Animal Embryogenesis

Résumé

The recent availability of complete cell lineages from live imaging data opens the way to novel methodologiesfor the automated analysis of cell dynamics in animal embryogenesis. We propose a method for the calcula-tion of measure-based dissimilarities between cells. These dissimilarity measures allow the use of clusteringalgorithms for the inference of time-persistent patterns. The method is applied to the digital cell lineagesreconstructed from live zebrafish embryos imaged from 6 to 13 hours post fertilization. We show that theposition and velocity of cells are sufficient to identify relevant morphological features including bilateral sym-metry and coherent cell domains. The method is flexible enough to readily integrate larger sets of measuresopening the way to the automated identification of morphogenetic fields.
Fichier principal
Vignette du fichier
ead2615525dfa6cc019f9aecbbef7e955cbf.pdf (2.27 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01699649 , version 1 (16-01-2024)

Identifiants

Citer

Juan Raphael Diaz Simoes, Paul Bourgine, Denis S Grebenkov, Nadine Peyriéras. Cell Trajectory Clustering: Towards the Automated Identification of Morphogenetic Fields in Animal Embryogenesis. 6th International Conference on Pattern Recognition Applications and Methods, Feb 2017, Porto, Portugal. pp 746-752, ⟨10.5220/0006259407460752⟩. ⟨hal-01699649⟩
289 Consultations
21 Téléchargements

Altmetric

Partager

More