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Abstract 

Smart thermostats are expected to become the first residential appliance to offer significant 
demand response (DR) capacity worldwide. Their success will depend, to a large extent, on 
how people’s thermal comfort will be affected by the dynamic conditions induced during DR 
events. To study and evaluate such conditions, researchers have so far mainly relied on 
Fanger’s predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) indices. 
However, Fanger’s model is only suited to predict PMV and PPD under steady-state or slowly 
changing environmental conditions. For the comfort evaluation of transient thermal 
conditions, there is still a limited understanding of the psycho-physiological phenomena of 
thermal alliesthesia and thermal habituation/adaptation, which govern the dynamic thermal 
perception. In this paper, these two phenomena are incorporated, for the first time, into a 
dynamic thermal comfort model, which is able to predict the percentage of dissatisfied 
occupants from Fanger’s PMV index. The novel PPD is the result of both a static (PMV-based) 
and a transient (hedonic and adaptive) component. Since the model builds on the widely-
used PMV index, it has the potential to be largely adopted by academics and practitioners 
and greatly improve their understanding of how people experience comfort and discomfort 
under DR-induced dynamic environments. 
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1. Introduction 

1.1. Context 

Flexibility in electric power consumption can be inexpensively and efficiently secured via 
demand response (DR), which can be defined as “a concept describing an incentivizing of 

customers by costs, ecological information or others in order to initiate a change in their 

consumption or feed-in pattern” [1]. In buildings, DR-activated smart thermostats typically 
induce cyclical set-point modulations, which are characterized by repeated rises and falls of 
the indoor temperature. For example, the French company Voltalis in coordination with RTE 
has already tested on 45000 French households different DR events, under the form of 
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successions of 10-minutes off periods of the heating system and periods of rest (on) of 20 
minutes [2]. The magnitude of the induced rates of temperature change depends on several 
factors, such as the thermal characteristics of the buildings and the types of emitters and 
controllers used. To evaluate thermal comfort under such a variety of dynamic thermal 
environments, researchers have so far mainly used Fanger’s traditional PMV/PPD model [3–
10]. However, Fanger’s model is derived from a steady-state heat balance equation and 
steady-state laboratory experiments [11] and is, therefore, only suited to predict thermal 
comfort under steady-state or slowly changing (rate of temperature change less than 2°C/h) 
indoor conditions [12]. Thus, Fanger’s model is not able to correctly predict PPD for rates of 
temperature change higher than 2°C/h, which is most often the case during DR events, 
especially in buildings with a low-performance thermal envelope. 

1.2. Literature 

Current standards only offer indications on the maximum temperature changes allowed over 
certain periods. The ASHRAE Standard 55 [13] sets to 2.2°C/h the maximum temperature 
change allowed for ramps or drifts during exposures of 1h. Ramps refer to actively controlled 
changes, drifts to passive (free-running) changes. Cyclical temperature variations with 
periods longer than 15 minutes are treated as ramps or drifts. For cyclical variations with 
periods shorter than 15 minutes a maximum peak-to-peak variation of 1.1°C is allowed. The 
ISO standard 7730 [14] sets a maximum peak-to-peak variation of 1°C for cyclic variations 
and recommends to use steady-state evaluation methods for ramps and drifts if the rate of 
temperature change is less than 2°C/h. 

In the last 20 years, thermal comfort research has been dominated by the paradigm of 
adaptive thermal comfort [15,16]. The adaptive thermal comfort model has revolutionized 
the way of evaluating thermal comfort in naturally ventilated buildings by demonstrating 
that people’s thermal preferences track seasonal temperature variations. In practice, the 
model prescribes comfort temperature boundaries - function of the external air 
temperatures - within which the indoor temperature can fluctuate. Hence, the adaptive 
theory acknowledges people’s adaptation to diurnal and seasonal temperature fluctuations 
and justifies it in terms of physiological, psychological and behavioural changes. However, it 
does not explain how short-term temperature fluctuations affect occupants’ thermal 
comfort. 

The majority of the laboratory experiments investigating transient thermal environments 
deals with step-change conditions [17–25]. While these studies give valuable insights into 
the process of dynamic thermal perception, they are more useful to model dynamic thermal 
comfort in transitional spaces than during DR events. In fact, exposures to cyclical 
temperature changes elicit phenomena that cannot be observed during single step-change 
exposures (see, for example, thermal habituation/adaptation in Section 2.3). During the 
Seventies and the Eighties few laboratory investigations have studied both cyclical and 
monotonic temperature variations [26–28] but they gave a mixed picture and did not clearly 
show whether dynamic conditions extend or shrink the steady-state comfort zone. By 
reviewing them, Hensen concluded that for rates below 1.5°C/h there is not a significant 
decrease or increase of Fanger’s steady-state comfort zone [29]. 

More recent research on cyclical and monotonic temperature variations narrows down to 4 
laboratory experiments [30–33], which are mainly addressing summer conditions. Of these, 
three studies [30–32] deal with cyclical temperature variations and one [33] focuses on 



ramps. The studied rates of temperature change are mostly below 6°C/h, only the work of 
Zhang [31] deals with rates of temperature change up to 30°C/h. The results of these recent 
studies indicate that cyclical changes in temperature might have a favourable impact on 
occupants’ thermal comfort, even under the high rates of temperature change studied in 
Zhang’s experiment [31]. In fact, none of the cycles tested in Zhang’s experiment complied 
with the ASHRAE standard, yet half of them were found to be thermally acceptable, showing 
that the ASHRAE limits are overly conservatives. Furthermore, Fanger’s PMV/PPD model was 
found to predict a tighter comfort range than the one actually observed during the studied 
modulations [31]. 

As an alternative to Fanger’s steady-state heat balance model, more complex multi-
segmental dynamic models of human thermoregulation have been developed in the past 40 
years [34,35]. They simulate the physical interaction between a dynamic indoor environment 
and an occupant and predict high-resolution skin and body core temperatures. The 
predicted temperatures can then be used as inputs of physiologically-based thermal 
perception models [36–40], which are built by means of regression analysis of experimental 
thermal sensation and/or comfort votes and simulated or monitored physiological 
parameters. Most of these models predict the dynamic thermal sensation of the whole-body 
under uniform indoor environments. Only the model of Zhang [37–39] predicts both local 
and whole-body thermal sensation and comfort under both uniform and non-uniform indoor 
environments. 

1.3. Research aims 

Despite the considerable efforts put into the advancement of these physiologically-based 
thermal perception models, a poor knowledge of the processes driving dynamic thermal 
perception still limits their further development. In particular, the two phenomena of 
thermal alliesthesia and thermal habituation/adaptation, which are known to affect the 
dynamic thermal perception, have so far received little consideration. In this paper, we 
include these two phenomena into a novel dynamic PPD index, which is derived from 
regression analysis of recently-collected experimental data [31]. We take a completely 
different approach than the one currently adopted by physiologically-based models since we 
assume that the brain can anticipate the PMV-based thermal perception and modify it with 
hedonic and adaptive attributes. This is based on the anticipatory comfort responses 
observed during step-change temperature variations [17–25]. Hence, the novel PPD 
combines both a static (PMV-based) and a transient (hedonic and adaptive) component. 
Since the novel model builds on the widely-used PMV index, it has the potential to be largely 
adopted by academics and practitioners and greatly improve their understanding of how 
people experience comfort and discomfort under cyclical temperature variations. 

2. A new conceptual framework 

2.1. Pathways for thermal perception 

Thermal perception begins with the activation of cutaneous thermoreceptors, which are 
pseudo-unipolar primary sensory neurons with one branch ending in molecular temperature 
sensors (located in the peripheral tissues) and the other branch consisting of cell bodies 
(located, for most of the body, in the dorsal root ganglia). Primary sensory neurons convert 
thermal stimuli into electrical signals, which travel to second-order neurons in the dorsal 



horn of the spinal cord, where information is further processed before being transmitted to 
the central nervous system (Figure 1). 

The molecular temperature sensors mostly belong to the family of the transient receptor 
potential (TRP) ion channels [41]. Depending on the type of TRP ion channel that they are 
expressing, primary sensory neurons can selectively encode heat and cold: TRPV1-expressing 
sensory neurons encode heat, while TRPM8-neurons encode cold [42]. Few TRPV1- and 
TRPM8-neurons encode both heat and cold. Second-order neurons in the dorsal horn of the 
spinal cord can also be classified based on their response to cold, heat and both heat and 
cold (Figure 1) [43]. 

The central nervous system includes: 

• The preoptic area of the hypothalamus for the initiation of autonomic 
thermoregulatory processes (vasodilatation and vasoconstriction, sweating, 
shivering, etc.) [44]. 

• The primary somatosensory cortex and the thalamus which are believed to provide 
an objective assessment of temperature and form the basis of thermal sensation 
(feeling warm, neutral, cold, etc.) [44]. 

• The lateral parabrachial nucleus which is thought to play an hedonic role in thermal 
perception and form the basis of thermal comfort [45]. It is also thought that thermal 
comfort (and not thermal sensation) is important for activating behavioural 
thermoregulatory actions in humans [46]. Thermoregulatory behaviours have been 
defined as “an attempt to avoid what humans call thermal discomfort or displeasure 

and to obtain thermal pleasure” [47]. 

Hence, both thermal comfort and thermal sensation have their origins in the central nervous 
system. However, thermal comfort has a more hedonic origin than thermal sensation [46]. 
Thus, by predicting occupants’ thermal sensation we are only capturing the objective part of 
thermal perception, overlooking its hedonic component, which becomes particularly 
important during transient conditions [22,29,48]. For this reason, this paper focuses on 
predicting occupants’ dissatisfaction rather than their thermal sensation. Throughout this 
article, the terms “thermal comfort” and “thermal satisfaction” are used interchangeably to 
indicate the hedonic component of thermal perception. 

 
Figure 1 Pathways for autonomous thermoregulatory responses and thermal perception 

2.2. Thermal alliesthesia 

According to Cabanan, alliesthesia is “the property of a given stimulus to arouse pleasure or 

displeasure according to the internal state of the subject” [49]. For the particular case of 
thermal alliesthesia, any thermal stimulus that minimizes the thermoregulatory load error is 



perceived as pleasant, while any stimulus that exacerbates it is perceived as unpleasant. 
When a stimulus is perceived as pleasant this transient condition can be described with the 
term of positive alliesthesia. On the contrary, a condition characterized by a transient 
unpleasant stimulus can be indicated as negative alliesthesia. Pleasure is also a sign of the 
usefulness of a stimulus since not-useful unpleasant stimuli are drivers of thermoregulatory 
behaviours [29,46,47,49]. 

Occupants can experience alliesthesia when undergoing a variation of any environmental or 
personal variable influencing thermal comfort. Under the transient conditions induced by DR 
events occupants typically stay within the thermal neutral zone (TNZ) of vasomotor 
regulation, which is characterized by adjustments of skin blood flow (i.e. vasodilatation and 
vasoconstriction). In this zone, the concept of spatial alliesthesia, firstly discovered by Marks 
and Gonzalez [48] and subsequently formalized by Parkinson and de Dear [50], becomes of 
great relevance since the body core temperature stays invariant while the different regional 
skin temperatures displaced from their set-points are responsible for the thermoregulatory 
load-error. Thus, for the case of spatial thermal alliesthesia, the thermoregulatory load-error 
emanates from cutaneous thermoreceptors distributed throughout the entire body [50], 
while the more conventional notion of alliesthesia considers that pleasure is driven from 
load errors emanating from the body core [49]. In the rest of this paper the general term 
“alliesthesia” is used to indicate the phenomenon of spatial thermal alliesthesia. 

The intensity of the alliesthesial effect is driven by both the magnitude of the load error (i.e. 
the physiological state of the occupant away from the neutral condition) and the rate of 
change in the skin temperature [51]. It is not clear if the intensity of the alliesthesial effect is 
equally affected by cooling and warming rates of the skin. Recent research evidence from 
neuroscience experiments shows that, in the dorsal horn of the spinal cord, the temperature 
intensity-response relationships in the cold and heat ranges are different [43]. The response 
of cold-sensitive spinal neurons has been shown to mainly depend on the rate of cooling and 
rapidly adapt. In contrast, heat-sensitive spinal neurons are found to mainly respond to the 
absolute temperatures and not adapt. Since the spinal cord is the first relay centre in which 
peripheral thermal stimuli are processed before being sent to the central nervous system 
(Figure 1 in Section 2.1), these results suggest that humans are more sensitive to cooling 
than warming and that cooling rates of the skin might elicit stronger alliesthesial effects 
compared to warming rates. However, this has not been confirmed yet. 

2.3. Thermal habituation/adaptation 

During repeated thermal exposures, adaptive processes acting at either peripheral or central 
level can modify occupants’ thermal perception. Habituation is a form of nonassociative 
learning, which happens in the central nervous system, while sensory adaptation (or sensory 
fatigue) is directly related to the activity of primary sensory neurons. They both lead to a 
reduction of the normal response or sensation and both have been shown to be reversible 
[52]. Hence, if the stimulus is withheld for a period of time after habituation/adaptation and 
then given again, the response will become again normal. In this paper we do not distinguish 
between habituation and adaptation and refer to both of them with the general term of 
“habituation/adaptation”. Habituation/adaptation has been observed in several thermal 
comfort laboratory experiments [53–56] and is believed to depend on modifications of the 
way thermal stimuli are processed, with repeated stimulation of the synapses causing 
changes in the magnitude of the postsynaptic responses to subsequent stimulations [57,58]. 



We know that thermal habituation/adaptation develops over a much shorter time scale than 
physiological adaptation and anticipates any morphological, chemical, functional, and 
genetic changes that reduce physiological strain when exposed to thermal stress [59,60]. 
However, little is yet known on how adaptive processes influence thermal comfort, 
particularly during cyclical temperature variations. Most of the insights on these adaptive 
processes remain limited to research on thermal pain perception [61,62]. 

3. Methods 

3.1. Dataset 

For developing the novel PPD model, we used experimental data collected at the Indoor 
Environmental Quality Laboratory of the University of Sydney as part of a study investigating 
the comfort impact of DR events [31]. We decided to focus solely on this data for two main 
reasons: 

• Among the recent literature of dynamic thermal comfort studies, this is the 
laboratory experiment employing the greatest number of participants exposed to the 
highest rates of temperature change (up to 30°C/h). 

• The studied temperature variations correspond to those normally found during 
summer DR events in university lecture theatres and, being cyclical, allow to 
investigate the phenomena of thermal habituation/adaptation. 

As part of Zhang’s experiment, fifty-six students were exposed to 6 different cyclical 
temperature variations, with each variation having an overall duration of 2 hours, see Figure 
2. The study was conducted in summer and was specifically addressing an air-conditioning 
(cooling) case. The students were wearing a standardized clothing ensemble whose clothing 
insulation was estimated to be 0.5 clo, including the insulation of the chair. The 
experimental sessions were characterized by adapting temperatures (i.e. the temperature to 
which the skin is adapted for half hour before the temperature variation starts) of 22°C 
(conditions no. 2, 3 and 4 in Figure 2) and 24°C (conditions no. 5, 6 and 7 in Figure 2). Air and 
globe temperature, relative humidity and air velocity were measured every 5 minutes over 
the 2 hours of each of the 6 studied conditions. Thermal acceptability was also monitored 
every 5 minutes for each participating subject. 

In Figure 2, the observed percentage of dissatisfied subjects, observed ��, is interpreted 
from a binary thermal acceptability scale and is defined as the ratio of thermal 
unacceptability votes to total votes. Figure 2 also shows the operative temperature ��� (on 

the left) and Fanger’s ��� (on the right). It is worth noting that Fanger’s PPD index is 
derived using a different definition for the percentage of dissatisfied subjects, which is the 
percent of people voting above warm or below cool (≥2 or ≤-2) on the 7-point ASHRAE 
thermal sensation scale. This method of derivation of ��� is suitable under steady-state 
conditions. However, under dynamic conditions, warm and cold thermal sensations can be 
associated with pleasure if positive alliesthesia is elicited, hence Fanger’s derivation of the ��� index can correctly predict thermal dissatisfaction only under steady-state conditions. 



  

Figure 2 Operative temperature (���, left) and percentage of dissatisfied people (observed ��	and Fanger’s ���, right) for the 6 cyclical temperature variations (conditions 2-7). The 

observed ��	represents the vote of all participating students every 5 minutes, while ��� 

corresponds to the mean calculated value every 5 minutes. Adapted from [31]. 

3.2. Statistical analysis 

Multiple linear regression with possible third-way interactions is used to model the 
relationship between the independent or explanatory variables (described in Section 3.3) 
and the response variable (the observed PD). Multiple linear regression is implemented in 
Python using the function statsmodels.api.ols(). Backward elimination is used for selecting 
the “best” subset of predictors in Section 4.1. To evaluate the predictive performance of the 
selected statistical model, cross-validation is used in Section 4.2. 

3.3. Predictors 

Fanger’s PMV index integrates the effect of all six basic thermal comfort parameters: air 
temperature, mean radiant temperature, air movement, humidity, clothing insulation and 
metabolic heat generated by human activity. According to Fanger, the body heat balance is a 
necessary but not sufficient condition to achieve thermal comfort since it is also necessary to 
have a mean skin temperature and a sweat secretion rate within comfort limits which 
depend on the metabolic activity and are determined from steady-state experiments in 
climate chambers [11]. Bearing in mind that the PMV does not represent the actual thermal 



sensation under dynamic thermal conditions, it is worth stressing that our main interest here 
is to develop a statistical model to predict thermal comfort rather than thermal sensation. 
Hence, we use the PMV index as an indicator of the body’s steady-state thermal condition. 
In doing so, we assume that the brain can anticipate the PMV-based thermal perception. 
This also allows to define the novel ��� directly from Fanger’s PMV index. Since the relation 
between ��� and �� is not linear, we use as predictor the exponential function directly 
derived by Fanger based on laboratory experiments involving 1300 subjects: 
��� = 	
���.�����������.��������� 1) 

To include the phenomenon of alliesthesia (Section 2.2), a categorical independent variable, 
called �  !
"#ℎ
"!�, is introduced. %&"!#!'
 and (
)�#!'
 alliesthesial states are defined 
based on the rate of change or gradient of ���. Here, we use a second-order central finite 

difference method to estimate 
	*���*+ , which is sampled every 5 minutes and is expressed in 

vote/h. On the warm side of the TNZ (���>0), (
)�#!'
 �  !
"#ℎ
"!� occurs when 
	*���*+  is 

positive, i.e. when the occupant is moving away from a PMV equal to zero (thus inducing or 

exacerbating the thermal stress). On the contrary, %&"!#!'
 �  !
"#ℎ
"!� occurs when 
	*���*+  

is negative, i.e. when the occupant is moving towards a neutral PMV (thus relieving or 
removing the thermal stress). On the cold side of the TNZ, the opposite applies. 

To further characterize the phenomenon of alliesthesia, we introduce a continuous 

independent variable, the absolute value of 
	*���*+ , which measures the intensity of the 

alliesthesial effect at each thermal state and accounts for the fact that skin thermoreceptors 

respond not only to the temperature but also to the rate of temperature change [29]. ,	*���*+ , 
includes the variation of any thermal parameter. In this study, the air temperature is mainly 

varied (as it is most often the case during DR events) and, therefore, ,	*���*+ , is strongly 

correlated to the rate of temperature change. 

If the thermal state stays unchanged or changes very slowly neither an alliesthesial pleasant 
sensation nor an unpleasant one arises. To model this state we set the additional level of (& �  !
"#ℎ
"!� for	,	*���*+ , < 1	'&#
/ℎ. 1 vote/h corresponds to a rate of change of the 

operative temperature of about 3°C/h, the other conditions (clothing, activity, air velocity 
and air humidity) being constant. Thus, �  !
"#ℎ
"!� is a factor with three possible levels: %&"!#!'
, (
)�#!'
 and (& (Figure 3). 

 



  

Figure 3 On the left: Observed �� as a function of ��� for the three levels of positive (P), 

negative (N) and no alliesthesia in red, black and yellow respectively. Fanger’s ��� model 

is plotted in blue for purposes of comparison. On the right: Gaussian kernel density 

estimate of the absolute values of the rate of change of ���. 

The phenomenon of thermal habituation/adaptation (Section 2.3) is modelled by introducing 
a predictor, called 
0%&"12
, which is defined as the sum, at each cycle, of the squared 
difference between the actual ��� and the minimum ���345 during the cycle: 


0%&"12
 = 6 7��� 8 ���3459�:#
;<;=>

	?:!"@&AB&2#�	A!(1#
"C 2) 

Where: :# = duration of the thermal stimulus [minutes]. ���345 = minimum ��� reached at each cycle, which is equal to 0 if the ��� gets 
negative. 

The calculated ��� and 
0%&"12
 for the 6 cyclical temperature variations are shown in 
the left and right of Figure 4 respectively. 

The selected independent or explanatory variables (
���, �  !
"#ℎ
"!�, 	,	*���*+ , and 
0%&"12
) are calculated every 5 minutes from the aggregated data of all the participants. 
The makes a total of 138 data points to derive the model. 



  

Figure 4 Calculated ��� (left) and 
0%&"12
 (right) for the 6 cyclical temperature 

variations (conditions 2-7). 

4. Results 

4.1. Backward elimination 

Backward elimination starts with all of the predictors in the model and consists in refitting 
the model several times, each time removing the least significant term (with the largest p-
value over 0.01), until left with only significant effects. Significant effects have p-value 
smaller than 0.01. 

The resulting model has a coefficient of determination D� equal to 0.836, hence our 
predictors explain 83.6% of the variability of our dependent variable, the observed ��. The F 8 ratio is equal to 48.67 and the p-value associated with the model as a whole is very 
small, p < 2.51
�U�, which means that the regression model is a good fit of the data. The 
key assumptions of linear regression (normality, homoscedasticity and no autocorrelation of 
the residual errors, no multicollinearity of the independent variables) have been met. 
Regression coefficients of the resulting linear model are shown in Table 1. 

There is one main significant predictor, 
���, and 4 significant interaction terms: �  !
"#ℎ
"!� ∗ 	 ,	*���*+ ,, �  !
"#ℎ
"!� ∗ 	 ,	*���*+ , ∗ 	
���, �  !
"#ℎ
"!� ∗ 	
0%&"12
, �  !
"#ℎ
"!� ∗ 	
0%&"12
 ∗ 	
���. It is to be noticed that we have included only the 



interaction terms as the main effects were not significant. This was taken into account in the 
interpretation of the interaction terms given below. 

The fact that the coefficient of 
��� is negative means that: the higher the values of 
���, 
the lower the percentage of dissatisfied people (��). Since 
��� is given by Equation 1, 
higher values of 
��� implies lower values of ���. Thus, we can conclude that: the lower 
the values of ��� (in absolute terms), the lower the percentage of dissatisfied people (��). 

The first significant interaction term (�  !
"#ℎ
"!� ∗ 	 ,	*���*+ ,) means that effect of ,	*���*+ , 
differs across the different levels of �  !
"#ℎ
"!�: ,	*���*+ , has significant effect in the %&"!#!'
	�  !
"#ℎ
"!� level but its effect is not significant in the	(
)�#!'
 and (& levels of �  !
"#ℎ
"!�. For the first time, we observe that the intensity of positive alliesthesia is 
significantly affected by the magnitude of the cooling rate. The second significant interaction 

term (�  !
"#ℎ
"!� ∗ 	 ,	*���*+ , ∗ 	
���) means that the interaction between ,	*���*+ , and 
��� is positive and significant only for the %&"!#!'
	�  !
"#ℎ
"!� level, i.e. the effect of ,	*���*+ , becomes stronger as we go further from the neutrality. The third significant 

interaction term (�  !
"#ℎ
"!� ∗ 	
0%&"12
) means that the effect of 
0%&"12
 varies 
among the different levels of �  !
"#ℎ
"!�: 
0%&"12
 has significant effect in the 	(
)�#!'
 
level but its effect is not significant in the	%&"!#!'
 and (& levels of �  !
"#ℎ
"!�. Finally, the 
fourth significant interaction term (�  !
"#ℎ
"!� ∗ 	
0%&"12
 ∗ 	
���) means that the 
interaction between 
0%&"12
 and 
��� is positive and significant only for the (
)�#!'
	�  !
"#ℎ
"!� level, i.e. the effect of 
0%&"12
 is larger as we go further from the 
neutrality. 

Table 1 Regression coefficients for the predictors. Significant terms are indicated with an 

asterisk. 

 Estimate 
Std. 

Error 
t 

Significance 
p X(#
2@
%#	 100.3416 8.726 11.499 0.000* 
���	 -96.9343 9.596 -10.101 0.000* 

�  !
"#ℎ
"!�?YC ∗ Z	[���[# Z	 4.6839 3.946 1.187 0.237 

�  !
"#ℎ
"!�?�C ∗ Z	[���[# Z	 -10.5864 3.372 -3.139 0.002* 

�  !
"#ℎ
"!�?(&C ∗ Z	[���[# Z	 19.1658 16.932 1.132 0.260 

�  !
"#ℎ
"!�?YC ∗ Z	[���[# Z ∗ 
���	 -3.3458 4.309 -0.777 0.439 

�  !
"#ℎ
"!�?�C ∗ Z	[���[# Z ∗ 
���	 10.1192 3.771 2.683 0.008* 

�  !
"#ℎ
"!�?(&C ∗ Z	[���[# Z ∗ 
���	 -20.5624 19.788 -1.039 0.301 

�  !
"#ℎ
"!�?YC ∗ 
0%&"12
	 -1.1778 0.256 -4.607 0.000* �  !
"#ℎ
"!�?�C ∗ 
0%&"12
	 -0.1667 0.287 -0.581 0.563 �  !
"#ℎ
"!�?(&C ∗ 
0%&"12
	 -0.6990 0.290 -2.409 0.017 �  !
"#ℎ
"!�?YC ∗ 
0%&"12
 ∗ 
���	 1.1679 0.315 3.711 0.000* �  !
"#ℎ
"!�?�C ∗ 
0%&"12
 ∗ 
���	 0.1403 0.326 0.430 0.668 �  !
"#ℎ
"!�?(&C ∗ 
0%&"12
 ∗ 
���	 0.6553 0.383 1.711 0.090 

 



The novel model for predicting ��� on the warm side of the TNZ (95% of the available 
experimental data comes from the warm side of the TNZ) takes the form: Y&'
 	��� = 100.34

+ ]� ∗ Z	[���[# Z + ^ ∗ 
0%&"12
 8 96.93` ∗ 
���.��∗������.��∗�����
+ @ ∗ Z	[���[# Z + : ∗ 
0%&"12
 

3) 

Where: 

• a=10.12h, b=0.14min-1, c=-10.59h, d=-0.17min-1 for %&"!#!'
	�  !
"#ℎ
"!�, 

• a=-3.34h, b=1.17min-1, c=4.68h, d=-1.18min-1 for (
)�#!'
	�  !
"#ℎ
"!�, 

• a=-20.56h, b=0.65min-1, c=19.16h, d=-0.7min-1 for (&	�  !
"#ℎ
"!�. 

4.2. Cross-validation 

Obtaining high R2 values does not necessarily imply having a good model. It is easy to over-fit 
the data by including too many degrees of freedom and inflating R2. Thus, to further 
evaluate the predictive performance of the derived statistical model, cross-validation is 
used. The dataset is split 10 times into 3 different training and validation/test sets, equal or 
close in size. The training set is used to train the model, and the validation/test set is used to 
validate the model on data that it has never seen before. The root-mean-square-error (RMSE) 
is used to measure the predictive accuracy of each model. 

RMSE = 	d∑7�� 8 ���9�
(  4) 

Where �� is the observed value, ��� is the predicted value and ( is the number of data 
points. 

Figure 5 shows the boxplots of the RMSE calculated for four different models: the first model 
has only 
��� as predictor (1 predictor), the second model has 
���, �  !
"#ℎ
"!�, ,	*���*+ , and 
0%&"12
 as predictors (4 predictors without any interaction term), the third 

model is the model that we have just derived with the significant interaction terms (5 
predictors), the last model includes all the possible third-way interactions between 
���, �  !
"#ℎ
"!�, ,	*���*+ , and 
0%&"12
 (14 predictors). From Figure 5 we can see that our 

model (5 predictors) has the smaller mean RMSE, which is less than 6%. This corresponds to 
a percentage decrease of the mean RMSE of about 30% compared to Fanger’s RMSE, which 
is calculated using the entire dataset and shown with the red dashed line in Figure 5. 



 
Figure 5 Boxplots of the RMSEs associated to the four different models tested. Fanger’s 

RMSE is calculated using the entire dataset and is shown with the red dashed line. 

5. Discussion 

The novel ��� model is represented in Figure 6 for different values of ,	*���*+ , and 
0%&"12
 

and for the range of ��� values studied in Zhang’s experiment. Validity of the model 
beyond that range is discussed in the following paragraph. From Figure 6 we can notice that 

for 
0%&"12
 equal to 0	:!"@&AB&2#	�	A!(1#
" and ,	*���*+ , less than 1	'&#
/ℎ	 (i.e. no 

alliesthesia in yellow) there is neither alliesthesia nor habituation/adaptation and, thus, the 
new model nearly coincides with Fanger’s model. Also, in the case of positive alliesthesia and 
for a thermal environment that is rapidly changing (high rates of change of ���), the 
predicted percentage of dissatisfied occupants is less than 5%, which is the minimum value 
obtainable using Fanger’s ��� model, and reaches up to 0%. This aligns well with the 
hypothesis of alliesthesia: “higher levels of occupant satisfaction in transient or textured 

thermal environments may be explained by the hedonic overtones from the alliesthesial 

effect” [63]. Figure 7 show the predictions of the novel model compared to Fanger’s ��� 
values over the used dataset. 



 
Figure 6 Predicted percentage of dissatisfied occupants as a function of ��� at different 

combinations of 
0%&"12
 (0 and 50 discomfort
2
 minutes) and ,	*���*+ , (1, 4 and 6 vote/h) 

for the cases of positive (red), negative (black) and no (yellow) �  !
"#ℎ
"!�. Fanger’s ��� 

is plotted in blue for purposes of comparison. 

 
Figure 7 Percentage of dissatisfied people (observed ��, Fanger’s ��� and Novel ���) 

for the 6 cyclical temperature variations (conditions 2-7). The three levels of positive (P), 

negative (N) and no alliesthesia are highlighted in red, black and yellow respectively. 



The recent discovery, anticipated in Section 2.2, of cold-sensitive spinal neurons mainly 
responding to the rate of temperature change and heat-sensitive spinal neurons mainly 
responding to the absolute temperature [43] can be directly linked to our results from the 
warm side of the TNZ, which show a significant effect of the rate of temperature change, i.e. ,	*���*+ ,, only during the cooling down phases of positive alliesthesia (see upper part of Figure 

8). This means that humans are more sensitive to cooling than warming and that the 
intensity of the alliesthesial effect depends on the rate of cooling but does not depend on 
the rate of warming. This recent discovery also explains the much larger thermal sensation 
overshoots observed during temperature down-step changes than during temperature up-
step changes [17–19]. 

On the warm side of the TNZ cooling is related to positive alliesthesia, while on the cold side 
of the TNZ cooling is associated with negative alliesthesia (Figure 8). Thus, we can 

hypothesize that, on the cold side of the TNZ, ,	*���*+ , has a significant effect only during the 

cooling down phase of negative alliesthesia and we can assume that this effect has the same 
magnitude as the positive alliesthesial effect on the warm side. On the basis of these 
hypotheses, we can extend the model to the cold side of the TNZ zone as shown in Figure 9. 

 
Figure 8 Asymmetric alliesthesial effect on the warm and cold side of the TNZ. 

From Figure 9 we can observe that, on the warm side of the TNZ, the thermal comfort zone 
extends when the cooling rates are faster, while, on the cold side of the TNZ, the thermal 
comfort zone has the opposite behaviour and shrinks as the temperature decreases faster. 
This asymmetric behaviour has important implications for the way in which set-point 
modulations are implemented during DR events. In summer, it is important to have 
modulations characterized by rapid cooling phases, while in winter the greatest attention 
should be given to minimize cooling rates to avoid eliciting uncomfortable negative 
alliesthesial effects. 

According to the ASHRAE standard [13], a thermal environment can be regarded as 
acceptable if more than 80% of the occupants find it thermally acceptable. In Figure 9 the 
80% acceptable limit on the warm side of the TNZ extends up to a PMV of 1.5, which is 
almost the double of Fanger’s limit of about 0.85. While, on the cold side of the TNZ, it 
shrinks down to a PMV of 0.5. Hence, the magnitude of the error between the novel model 
and Fanger’s model depends on the rate of temperature change. Higher rates of 
temperature change imply greater differences between the two models. 



 
Figure 9 Extended novel PPD model for 
0%&"12
 equal to 0	:!"@&AB&2#�	A!(1#
". 

6. Limitations and future directions 

The results presented herein suggest that accounting for the phenomena of thermal 
alliesthesia and thermal habituation/adaptation by using the novel PPD model allows to 
improve the accuracy of Fanger’s PPD index. However, there are still some important 
limitations, which are outlined below. 

In deriving this model we have assumed that the brain can anticipate the PMV-based 
thermal perception and modify it with hedonic and adaptive attributes. A part of the 
variance of PD is explained by the anticipatory response; the rest is explained by a transient 
(hedonic and adaptive) component. This is an oversimplified model of how the brain 
integrates and elaborates signals from cutaneous thermoreceptors. This oversimplification 
forcedly implies a loss of accuracy but the final model has the advantage of being relatively 
simple to understand and easy to apply. A more accurate approach would be to develop a 
novel physiological-based thermal perception model which can properly account for thermal 
alliesthesia and thermal habituation/adaptation. This could be a future direction to take. 

Additionally, only 5% of the available data comes from the cold side of the TNZ; hence, we 
can only speculate about what it is happening on that side. Further experimental studies 
collecting data from the cold side of the TNZ are needed to confirm the hypothesized 
behaviour. The cold side is as important as the warm side for studying DR, especially in 
European countries. Thus, giving answers to this question is of main importance. Also, data 
from the warm side of the TNZ are limited to PMV lower than 1.5; more data collected from 
PMV higher than 1.5 could make the model robust over the whole range of PMV values. 

The results from this paper only apply to uniform thermal environments. However, positive 
thermal alliesthesia has also been observed in non-uniform thermal environments, when 
local body parts are cooled or heated to relieve whole-body discomfort [53,54]. 



Finally, we do not know how thermal habituation/adaptation evolves during periods longer 
than 2 hours and if, for example, a plateau of minimum discomfort is reached after multiple 
repeated stimulations. New laboratory experiments characterized by periods longer than 2 
hours are needed to better understand the phenomenon of thermal habituation/adaptation. 
Furthermore, we ignore if and how the shape of the temperature variation influences 
thermal habituation/adaptation and we do not know for how long thermal 
habituation/adaptation lasts. The available knowledge on the subject is still very scarce, and 
comes mostly from research on thermal pain perception. New thermal comfort laboratory 
experiments are needed to fill these gaps. 

7. Conclusions 

This paper presents a novel dynamic thermal comfort model, which can be used to predict, 
under the transient indoor conditions induced by DR events, the percentage of dissatisfied 
people from Fanger’s PMV index. The new PPD index is derived from data collected in a 
laboratory experiment and allows a percentage decrease of the mean RMSE of about 30% 
compared to Fanger’s PPD index over the used dataset. Overall, the magnitude of the error 
between the novel model and Fanger’s model depends on the rate of temperature change. 
Higher rates of temperature change imply greater prediction differences between the two 
models. 

The new modelling approach includes the two psycho-physiological phenomena of thermal 
alliesthesia and thermal habituation/adaptation and contributes to a better understanding 
of their impact on dynamic thermal perception. For the first time we show that: 

• Positive alliesthesia on the warm side of the TNZ is highly sensitive to the cooling 
rate, in contrast to negative alliesthesia which is shown to not depend on the rate of 
temperature increase. This is explained, at cellular level, by the fact that the response 
of cold-sensitive spinal neurons is mainly a function of the rate of cooling, while heat-
sensitive spinal neurons respond to absolute temperatures. 

• Thermal habituation/adaptation can significantly reduce thermal discomfort in the 
case of negative alliesthesial stimuli. 

The novel PPD model can be used to evaluate occupant’s thermal dissatisfaction under 
different types of simulated set-point modulations and have the potential to inform the way 
temperature modulations are controlled during DR events. As an example, in summer, it is 
important to have modulations characterized by rapid cooling phases to elicit comfortable 
positive alliesthesial effects. Also, these findings open up new interesting directions of 
research in the field of dynamic thermal comfort. 
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