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Abstract 

Pyrite and greigite were identified in the wood of two ancient shipwrecks using an original 

multi-technique analytical approach. Structural characterization methods such as 

environmental scanning electron microscopy, micro-Raman spectroscopy and X-ray 

diffraction were combined with magnetic measurement methods, such as magnetic 

susceptibility measurements and isothermal remanent magnetization acquisition curves. This 

is the first time that magnetic measurement methods are used in the field of cultural heritage 

to study wet organic archaeological materials. They proved to be particularly suitable to 

detect with a very high sensitivity ferromagnetic s.l. mineral phases inside waterlogged 

wooden samples, i.e. in the bulk. The occurrence of iron sulfides in archaeological shipwrecks 

extracted from waterlogged environments is usually attributed to microbiologically influenced 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 2 

corrosion of iron fasteners. This study demonstrates that the nature of the identified iron 

sulfides is consistent with a step-by-step in situ anoxic oxidation process of mackinawite. 

 

Keywords: Pyrite, greigite, Raman spectroscopy, ESEM, magnetic characterization, 

archaeological shipwrecks. 

 

1. Introduction 

The durability of wood-iron assemblies can be problematic if a structure, or part of it, is 

waterlogged. This issue is well known in the field of cultural heritage preservation. When 

pieces of wood are assembled with iron fasteners (nails) and remain in wet and anoxic 

conditions, microbiologically influenced corrosion (MIC) of the metal is likely to take place, a 

consequence of the metabolic activity of sulfide-producing bacteria (SPB) [1-4]. These 

anaerobic microorganisms can use the oxygenated species of sulfur (sulfates, thiosulfates, 

sulfites…) present in the environment as electron acceptors and convert them to sulfides. The 

latter tend to precipitate with Fe
2+

 ions resulting from the in situ corrosion of the iron 

fasteners, which leads to the formation of iron sulfides [5]. These compounds constitute a 

diverse group of solids with various crystalline forms, Fe/S ratios and oxidation levels for 

both iron and sulfur. When corrosion of iron takes places in presence of sulfides, mackinawite 

(Fe
II
S) is the iron sulfide that precipitates from the dissolved species. It is however metastable 

and can be transformed to more stable mineral compounds [6-9]. It may also be oxidized, in 

both aerated and anoxic conditions. Fig. 1 summarizes the oxidation processes of 

mackinawite, based on bibliographic data. The transformation pathways depend on 

oxic/anoxic feature of the environment, sulfur supply via the production of sulfide species, 

temperature, moisture, pH, etc. [6-21]. As far as waterlogged wood-iron assemblies are 

concerned, these processes, occurring in situ or after exposure to air, strongly influence the 
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degradation mechanisms of wood. For instance, the post-excavation exposition to air and the 

drying of the wood-iron assemblies leads to the precipitation of voluminous iron/sulfate-

containing crystals such as melanterite (FeSO4,7H2O), rozenite (FeSO4,4H2O) or natrojarosite 

(NaFe3(OH)6(SO4)2). These compounds appear as unsightly efflorescence on the surface of 

the wood and are responsible of mechanical stresses, cracks and embrittlement [22-26]. 

Moreover, iron sulfides oxidation is concomitant to a high acidification, which is a crucial 

issue for holocellulose preservation. Macromolecules of wood, especially cellulose and 

hemicelluloses, are actually highly sensitive to acid hydrolysis and oxidation, which can 

induce the decay of the organic matrix [27-29]. Historical shipwrecks such as the Vasa (17
th

 

century), the Batavia (17
th

 century) or the Mary Rose (16
th

 century) are affected by these 

degradation phenomena. Various iron sulfides and reduced sulfur species were identified in 

archaeological remains. Pyrite (FeS2) and -S8 sulfur are generally considered as the most 

common compounds. Organic sulfur was detected in thiols (R-SH) and disulfides (R-SS-R’) 

groups associated to molecules of wood [22-26,30-32]. Mackinawite (FeS) proved 

predominant in wood samples extracted from 18
th

 and 19
th

 centuries shipwrecks, with greigite 

(Fe3S4) present in smaller amount [33]. Marcasite (FeS2) and pyrrhotite (Fe1-xS) were also 

mentioned [23,33]. These few examples show that the iron sulfides present inside the wood 

may differ from one wreck to another.  

This article is focused on the analysis of mineral phases, especially iron sulfides, in wood-iron 

artefacts. The samples were extracted from two ancient shipwrecks excavated from 

waterlogged soils, namely the wreck of Mandirac (Narbonne, France) and LSG4 (for Lyon 

Saint-Georges n°4, Lyon, France). No conservation treatment was applied to the analyzed 

samples. The new results are compared to those obtained previously with other shipwrecks 

(USS Monitor and wrecks of La Natière) [33]. Our approach aims to examine samples using a 

combination of various analytical techniques. The originality of the present work is to 
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associate magnetic measurement methods such as magnetic susceptibility measurement and 

isothermal remanent magnetization (IRM) acquisition curves with more common elemental 

and structural analysis methods, such as micro-Raman spectroscopy, scanning electron 

microscopy coupled with energy dispersive spectroscopy and X-ray diffraction. Some iron 

sulfides are magnetically ordered and can be easily detected and identified via magnetic 

characterization methods, even if present in very small amount (< 1 ppm). Magnetic 

measurements methods are very sensitive, allow analysis in the bulk and are not hindered nor 

perturbed by organic matter and water. Because they are based on the magnetic properties of 

mineral phases, they are in a first approach limited to the detection of magnetic phases. 

Common “non-magnetic” methods can detect a wider range of minerals, inform about their 

crystal structure and morphology but are much less sensitive. This is the first time that 

magnetic measurement methods are used in the field of cultural heritage to characterize 

organic archaeological materials. 

The ferromagnetic greigite was systematically detected in the analyzed samples thanks to 

magnetic measurements methods. Pyrite, which is paramagnetic, was detected in large 

amounts by other methods. The occurrence of both phases is discussed in relation to the 

oxidation pathways of mackinawite (FeS) and parameters like oxygen concentration and pH, 

duration of the burial and microbiological activity. The relevance of the applied analytical 

procedure is also assessed.  

 

2. Materials and methods 

2.1. Origin of the samples 

Two shipwrecks excavated from waterlogged sediments were studied. 

The wreck of Mandirac (4
th

 century) was discovered in the site of Castelou/Mandirac 

corresponding to the ancient ports of Narbonne (France), now inland [34-36]. The dimensions 
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were estimated at about 12 m long and 4 m wide. A Magnetic prospecting campaign 

conducted on site in 2014 revealed that the wood was abnormally magnetic throughout the 

entire wreck. It was also determined that there was no more metal in the nails used for 

assembly. Therefore, the magnetic signal had to be attributed to magnetic corrosion products 

present inside the wood. A plank was extracted during excavation and dedicated to the present 

study. This plank is called vaigre 11, in accordance with the inventory of each element of the 

wreck carried out by the archaeologists. Vaigre 11 was about 80 cm long, 16.5 cm wide, 2.5 

cm thick and contained a nail. No restoration treatment was applied to this plank. 

LSG4 (2
nd

 century), for Lyon Saint-Georges wreck n°4, is one of the 16 wrecks excavated 

between 2002 and 2004 in the city of Lyon (France) along the Saône river [37]. It was about 19 

m long for 5 m wide. During the ten years that elapsed between the excavation and the restoration 

treatment (PEG impregnation, Arc-Nucleart laboratory), the wreck was kept immersed in a 

lake. Four wood fragments of various shape, about 5 centimeters long, were provided for the 

study. Their localization in the wreck was unknown. Like the plank vaigre 11, they were not 

treated for restoration purpose. 

 

2.2. Analytical procedure 

To avoid the oxidation of Fe(II) compounds sensitive to oxidation by O2 from air, it is 

necessary to keep the samples waterlogged between excavation/extraction and analysis. Our 

samples were then carried to the laboratory wrapped in a plastic film or in bags placed in 

airtight containers filled with water. After reception at the laboratory, they were kept in their 

original packaging and stored in a freezer (-24°C) until analysis. Freezing can damage the 

wood, but this procedure proved efficient to avoid the transformation of oxygen-sensitive 

mineral phases such as iron sulfides [38, 39]. During the analysis campaign, they were stored 

at 4°C in order to prevent growth of mold.  
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The analytical procedure was designed for the study of large samples, such as vaigre 11, i.e. a 

wooden plank of several decimeters long. The first step consisted in determining the gradient 

of the magnetic properties in the whole sample by performing magnetic susceptibility 

measurements (contact measurements). Each measurement represented an elementary volume 

of 25 cm² (elementary surface) x 2 cm (thick). Thus, the sample was gridded in rows and 

columns. Values were measured and a magnetic susceptibility mapping was performed. The 

elementary surface was named according to its row/column position. The sample was then cut 

into 1.9x1.9x1.9 cm
3
 cubes (with a circular saw equipped with a Teflon blade or with a 

ceramic knife). Each cube was supposed to be extracted from each elementary volume. The 

cubes were placed in a plastic box adapted to the sample holder of the apparatus and magnetic 

susceptibility was measured before IRM and backfield curves were acquired. Magnetic 

characterization methods allow analyzing the whole volume of the cubes and were used first 

for this reason.  

Once magnetic measurements were performed, surface analysis methods were used to 

characterize some cubes selected for interest. For each cube, the surface of a freshly cut slice, 

randomly chosen according to the radial, tangential or longitudinal direction, was examined 

first with a stereomicroscope. The cutting was carried out with a ceramic blade in order to the 

contamination of the samples by magnetic micro-particles possibly provided by a steel blade. 

Such contamination could perturb further magnetic measurements. Then, Environmental 

Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (ESEM/EDS), 

micro-Raman spectroscopy (μ-SR) and X-ray diffraction (XRD) experiments were performed 

on other slices and conducted without any special protection against air. In addition, pH 

measurements were carried out on another slice still wet. The cutting of slices was carried out 

prior to observation/analysis and was renewed for each method and only the side 
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corresponding to the inner part of the sample was analyzed, so that always a freshly cut 

surface unexposed to air was studied.  

Vaigre 11 extracted from the wreck of Mandirac was studied using the procedure described 

above. For the small samples extracted from LSG4, it was not relevant to determine a gradient 

of magnetic properties and the analysis started with the IRM acquisition curves.  

Table 1 lists several naturally occurring iron sulfides with relevant properties. Each of these 

compounds could be expected a priori. Magnetic characterization methods and micro-Raman 

spectroscopy are part of the analytical procedure described above, so magnetic data and 

Raman bands are reported in this table [14,15,40-49]. Iron oxides such as magnetite (Fe3O4) 

and maghemite (-Fe2O3) are included because of their magnetic properties and their possible 

presence as corrosion products in the studied samples. 

 

2.3. Methods 

Low field magnetic susceptibility was measured with a magnetic susceptibility meter SM30 

(ZH Instruments, www.zhinstruments.com) for contact measurement and with a KLY4 

(Agico, www.agico.com) magnetic susceptibility meter for bulk samples. IRM and backfield 

curves were acquired up to three Tesla with a MMPM10 Magnetic Measurements pulse 

magnetizer (Magnetic Measurements Ltd., www.magnetic-measurements.com) and measured 

with a JR6 (Agico) spinner magnetometer. The magnetic susceptibility presents a wide range 

of variation over three orders of magnitude from negative values to strong positive ones. An 

arbitrary constant of 25 × 10
-6

 is added in order to proceed to a log10 transform. This allows 

considering only the para- and ferro-magnetic sensu lato (s.l.) components, removing the 

diamagnetic ones (i.e. wood and water). 

Electronic high-resolution micrographs and elemental analysis spectra were obtained with 

a scanning electron microscope (Quanta 200 FEG/ESEM, FEI, www.fei.com) coupled with an 
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EDAX Genesis EDS system for X-Ray microanalysis (www.edax.com). The observations 

were performed in environmental mode, low pressure (0.002 atm), with an acceleration 

voltage varying between 15 and 20 kV. This experimental method does not require any 

preparation for non-conductive materials and samples of wood were placed still wet in the 

analysis chamber. 

Micro-Raman spectroscopy experiments were carried out with a High Resolution LabRAM 

HR spectrometer (Jobin Yvon, www.horiba.com) equipped with a microscope (Olympus 

BX41, www.olympus-global.com), a ×50 objective and a Peltier-based cooled charge coupled 

device detector. The laser power was lowered down to 0.6 mW in order to prevent the 

transformation of heat-sensitive mineral phases. Spectra were recorded with the LabSpec 

software at a resolution of 0.2 cm
-1

. The samples were analyzed with an excitation wavelength 

of 632.82 nm.  

In complement, X-ray diffraction experiments were performed directly on the wood. A 

freshly cut slice was placed in the sample holder and exposed to the X-ray beam (wavelength 

λCo-Kα = 0.17903 nm). The diffractometer used (INEL EQUINOX 6000, www.inel.fr) is 

equipped with a curved detector (CPS 590) designed for the simultaneous detection of the 

diffracted photons on a 2 range of 90°. Acquisition was made with a constant angle of 

incidence (5 degrees) during 30 minutes. The diffraction patterns were processed with the 

Match! software (Cristal Impact, www.crystalimpact.com) including the COD database 

(Crystallography Open Database). 

Finally, pH measurements were performed on wet wooden slices freshly cut from the samples 

with a surface electrode (Sentix Sur, WTW, www.wtw.com) calibrated using pH = 4.00 and 

pH = 7.00 buffer solutions (VWR, www.vwr.com). 

 

3. Results  
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For the sake of clarity, magnetic measurements techniques are called "magnetic methods” 

while μ-SR, ESEM/EDS and XRD are called together "classical methods”. 

 

3.1. Identification of iron sulfides in vaigre 11 (wreck of Mandirac) 

The entire plank vaigre 11, extracted from the wreck of Mandirac and containing the remains 

of an iron nail, showed magnetic enhancement compared to natural wood and water values. 

Fig. 2a is the superimposition of the picture of the plank with the corresponding magnetic 

susceptibility mapping. According to the color code, red and white/light pink correspond to 

intense magnetic enhancement; blue or purple correspond to low values. The most magnetic 

zone is centered on the nail, which is located at position g20. Thirteen white squares are 

represented and correspond to the cubic samples that were analyzed by combining magnetic 

and classical methods. They were chosen along line e and column 20 because the most 

magnetic spot was located in e20 position. Only cubes e4, e15 and h20 are described in this 

article as representative examples. The remanent hysteresis curves of these three samples are 

very similar (Fig. 2b) and are characteristic of greigite. The greigite content, which was 

extrapolated from theoretical remanent saturation magnetization (Ms = 59 Am²/kg; Mrs/Ms = 

0.12) [50], ranges from 0.3 to 6000 ppm. Grain size can be determined with remanent curves 

and was estimated at about 20-500 nm. ESEM micrographs in chemical contrast obtained 

from the same three sample cubes are presented in Fig. 2c. In each case, bright crystals are 

observed. The micrograph of cube e4 reveals small crystals scattered in what appear like 

tracheids. In cube e15, particles of submicron to ten microns size are agglomerated inside the 

fibers. In the most magnetic area, where cube h20 was extracted, well-formed framboïds are 

observed. Framboïdal pyrite corresponds to equigranular submicron to micron-sized crystals 

of pyrite densely packed in spherical clusters. They were also found in large amount in cubes 

e20, f20, g20 (not shown). It must be noted that framboïdal pyrite was present in higher 
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density around the nail. EDS analysis of these bright micro-sized or framboïdal crystals (not 

shown) confirmed that they were composed of sulfur and iron with an average Fe/S atomic 

ratio equal to 0.51 ± 0.04 (the calibration was carried out using a reference sample of natural 

pyrite external to the present corpus). This ratio corresponds to a FeS2 stoichiometry, 

matching with pyrite or marcasite. Raman spectra (Fig. 3a,b,c) and XRD patterns (Fig. 3d,e,f) 

of cubes e4, e15 and h20 demonstrate that both pyrite (Raman bands at 344, 380 and 430 cm
-

1
) and marcasite (Raman bands at 323 and 386 cm

-1
) [46,47] are present. Marcasite was 

mainly detected in cubes e4 and e5 (e5 not shown), while pyrite was predominant elsewhere. 

In the most magnetic zone, greigite was also identified by -RS (Raman bands at 138, 188, 

250, 350 and 365 cm
-1

) [15]. At last siderite (FeCO3) was identified in samples g20 and h20 

(Raman bands at 185, 283, 715 and 1085 cm
-1

). The iron nail located in the cube g20 was 

completely corroded into siderite and pyrite. Therefore, cube h20 right next to it could contain 

part of its corrosion products.  

 

3.2 Identification of iron sulfides in LSG4 samples 

Four samples extracted from LSG4 wreck were analyzed. Backfield IRM curves are shown in 

Fig. 4a. Mid-magnetization, revealed by the intersection with the abscissa axis, is observed at 

60-63 mT for two samples and 28-35 mT for two others. The first value corresponds to 

greigite and the second results from a mixture of maghemite or magnetite and greigite. Figs. 

4b,c,d correspond to an ESEM micrograph, a Raman spectrum and the diffraction pattern 

obtained from the same sample. Numerous micron-sized and octahedral bright crystals are 

observed in chemical contrast (Fig. 4b). EDS spectra (not shown) revealed that these crystals 

were composed of sulfur and iron with an average Fe/S atomic ratio equal to 0.50 ± 0.02. This 

value, associated to the shape of the microcrystals, the Raman spectrum (Fig. 4c) and the 

diffraction pattern (Fig. 4d), are typical of pyrite.  
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3.3 Morphologies of pyrite 

The pyrite grains present inside the wood of LSG4 and the wreck of Mandirac exhibit the two 

typical morphologies of pyrite: framboïdal and euhedral. The term framboïd originates from 

the French word framboise (raspberry), because of its granular appearance reminiscent of this 

fruit. The size of the observed framboïds was between a few microns to more than 20 m. 

Euhedral pyrite corresponds to well-formed crystals with flat faces and sharp angles. In our 

samples, crystals of euhedral pyrite are mainly octahedral. Fig. 5 gathers the different 

morphologies of FeS2 crystals observed in samples from both wrecks. Fig. 5a shows a crystal 

with a radiative growth, detected in the wreck of Mandirac (cube e4). This shape is typical of 

marcasite [51]. Figs. 5b-h correspond to pyrite showing a range of different shapes, mainly 

cubes and octahedrons, truncated or not. Both wrecks presented the same diversity. In the 

plank of Mandirac, the morphologies changed with the distance from the nail. Framboïds 

were rather concentrated around the nail and could be observed in very high density around it 

(Fig. 2c). Euhedral crystals were observed farther from the nail (distance > ~5 cm). The 

density of crystals was sometimes very high in the tracheids, so that the concretions, by 

growing, took the shape of the cells (e.g. Fig. 5f). 

 

3.4 Additional results 

Needle-like crystals composed of sulfur, oxygen and calcium were often observed in the 

samples extracted from both wrecks (Fig. 6). They correspond to gypsum (CaSO4.2H2O) 

identified by -RS (Fig. 3c, cube h20, main Raman band at 1015 cm
-1

, vaigre 11) and XRD 

(Fig. 3g, cube h20, vaigre 11 and Fig. 5, LSG4). Besides, a strong signal attributed to the 

wood appears as broad humps located at 18.7° and 26.7° or 32.6° on the diffraction patterns 

of Fig. 3d,e,f, Fig. 4d and of Fig. 6c.  
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The pH values measured on the samples extracted from LSG4 were low, comprised between 

2.4 and 3.7 from a fragment to another. In vaigre 11, the pH varied with distance from the 

cube e20 (i.e. the most magnetic cube of the plank). In the most magnetic area (Magnetic 

susceptibility > 6.0 10
-4

 SI with maximum value of 53.9 10
-4

 SI), the pH values were 

comprised between 2.6 and 3.5. The weakest value of 2.6 corresponded to the cube g20 

containing the nail. Then, the pH increased gradually away from the nail to reach a value of 

5.6 at position e3 (less magnetic area, Magnetic susceptibility < 6.0 10
-4

 SI with lowest value 

of -0.093 10
-4

 SI).  

 

 

4. Discussion 

4.1 Oxidation processes of the precursor mackinawite (FeS) 

Pyrite and greigite are the predominant iron sulfides inside the wood fragments of LSG4 and 

in vaigre 11 of the wreck of Mandirac. ESEM micrographs showed that these minerals were 

located in the pores and vessels of the wood. Mackinawite was not detected, while this phase 

was predominant in wood samples extracted from more recent shipwrecks dated from the 18
th

 

and 19
th

 centuries [33]. Marcasite was detected in the wreck of Mandirac and observed rather 

far from the nail. Besides, gypsum (CaSO4 . 2H2O) was also observed. This phase resulted 

probably from the precipitation of salts, as the wood dried during analysis. Finally, neither 

pyrrhotite nor smythite were detected. These phases are ferromagnetic and magnetic methods 

are extremely sensitive. It was consequently considered that they were not present or at least 

as traces compared to greigite.  

Pyrite and greigite were identified here as the main iron sulfides while mackinawite was 

predominating in samples of other wrecks [33]. The previously studied wrecks were extracted 

from marine sites, while LSG4 was excavated from fluvial sediments and the wreck of 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 13 

Mandirac from a coastal marshland. In any case, the occurrence of iron sulfide is supposed to 

be associated with the MIC process of the fasteners. Huisman et al. [52] reported the presence 

of pyrite in several wooden samples extracted from different waterlogged sites, marine or 

terrestrial. Sulfate reducing bacteria, the main microorganisms involved in MIC processes of 

iron, can grow and be active in various environments and various reducing conditions 

whatever the salinity, i.e. in seawater, freshwater or sediments. Nevertheless, the diversity of 

iron sulfides from one wreck to another can result from the influence of many parameters. 

Among them time, i.e. age of the wrecks, and pH of the medium seem particularly interesting 

to point out.  

First, the older the wreck is, the longer it has remained in anoxic conditions once trapped in 

sediments, provided that the environment was never disturbed overtime. The wrecks reported 

in Rémazeilles et al. [33]
 
were more recent (19

th
 and 18

th
 centuries) than LSG4 and the wreck 

of Mandirac (2
nd

 and 4
th

 centuries). Referring to Fig. 1, mackinawite is the first product 

resulting from sulfide assisted corrosion of iron. In anoxic conditions and without excess of 

sulfides, mackinawite may not transform. In an excess of sulfide is provided, mackinawite (1 

Fe atom for 1 S atom) can be oxidized into greigite (1 Fe atom for 1.3 S atoms). Then, 

greigite can in turn be oxidized into pyrite (1 Fe atom for 2 S atoms). This pathway would 

occur with a persistent sulfide supply, i.e. typically in the presence of a continuous sulfide-

producing bacteria activity. A long-term microbiological activity promoted by a bacterial 

consortium is possible in a waterlogged archaeological site because anoxic conditions can be 

maintained for a very long time. The anoxic oxidation of mackinawite into pyrite via greigite 

involves a progressive assimilation of sulfide species in the solid phases, so that the 

environment does never reach the overdose level in sulfides able to impede the development 

of SRB colonies. In addition to this, sulfide species can also react with organic matter in 

disulfides or thiols molecular groups for example. Thus, the predominance of pyrite and 
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greigite in LSG4 and in the wreck of Mandirac may be associated with an intense and/or very 

long microbiological activity. Since greigite was detected in LSG4 samples and in vaigre 11, 

its implication in the oxidation process of mackinawite into pyrite is unambiguous, in 

particular concerning the formation of framboïdal pyrite. Wilkin and Barnes proposed a 

model describing the formation process of framboïdal pyrite from precipitation of 

mackinawite and implying greigite as the pyrite precursor [53]. This model involves four 

steps and can be perfectly transposed to the current system as follows: (i) precipitation of 

mackinawite due to MIC promoted by SPB, (ii) oxidation of mackinawite into greigite by H2S 

provided by the anaerobic bacterial activity, (iii) aggregation of greigite microcrystals due to 

their magnetic properties, (iv) oxidation of greigite into pyrite microcrystals by bacterial H2S. 

Once formed, framboïds continue to grow and produce coarser and less ordered clusters. The 

ancient LSG4 and Mandirac wrecks illustrate step (iv) that corresponds to the transformation 

of greigite into pyrite. Consequently, mackinawite has already been entirely oxidized into 

greigite. In more recent wrecks, mackinawite was predominant because it was not completely 

transformed.  It can be assumed that mackinawite was also the first iron sulfide to precipitate, 

due to the MIC of iron fasteners, in LSG4 and in the wreck of Mandirac.  

Secondly, the anoxic oxidation process of iron sulfides, occurring in situ, is concomitant to an 

acidification of the medium. LSG4 and vaigre 11 samples, containing greigite and pyrite, 

presented accordingly very low pHs. On the contrary, the pHs measured on the samples 

reported in Rémazeilles et al. [33], containing mainly mackinawite,
 
were closed to neutrality.  

The oxic pathway of iron sulfides oxidation, as reported in Fig. 1, specifies that greigite can 

be oxidized into iron (oxyhydr)oxides and mineral sulfur (-S8) when oxygen is present. 

Magnetite was detected by magnetic methods in LSG4 samples. Its formation is attributed to 

the 10 years long storage in the lake between excavation and restoration. The occurrence of 

iron oxides can be explained by the exposure of the remains to an aqueous oxygenated 
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medium and the aerial oxidation of greigite by dissolved O2. Moreover, once the remains were 

immersed in the lake, the on-going MIC process of the nails could have been converted into a 

process exclusively controlled by O2, favoring the occurrence of iron oxides (e.g. magnetite) 

as corrosion products instead of iron sulfides. Magnetite was not detected in vaigre 11, which 

was stored sheltered from air as soon as it was excavated and all along its storage before 

analysis. 

 

4.2. Focus on greigite and contribution of magnetic measurement methods 

Magnetic measurements performed on LSG4 and vaigre 11 samples demonstrated that the 

magnetic signal was mainly due to greigite. That of vaigre 11 was actually exclusively due to 

greigite. This compound could be detected in the entire plank by magnetic measurement 

methods, while classical methods revealed its presence only close to the nail (cubes e17, e18, 

e19, e20, f20, g20, h20). Because the same magnetic signal was detected all along the wreck, 

it can be concluded that the whole wreck was contaminated by greigite. As a diagnosis and in 

term of representativeness of the analyzed part of the remains, such results are very useful for 

restorers to design a relevant conservation strategy. 

Fig. 7 displays two SEM micrographs of areas where greigite was identified by Raman 

spectroscopy. Fig. 7a was obtained from a sample of LSG4 and Fig. 7b was obtained from 

cube e18 of vaigre 11. In both cases, aggregates of submicron to micron-sized platelets were 

observed. The morphology of greigite is not always clearly described in literature [43] but the 

platelet shape visible in the figure was already reported for a hydrothermally synthesized 

greigite [54]. The EDS spectrum presented in Fig. 7c was obtained from the particles of Fig. 

7a. It is only composed of iron and sulfur peaks and the Fe/S atomic ratio proved different 

from that of pyrite and varied from 0.76 to 0.80. This is slightly higher than 0.75, the expected 
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value for greigite (Fe3S4), and could correspond to a non-stoichiometric greigite with general 

formula Fe3+xO4.  

Greigite is particularly interesting because it occurs as an intermediate compound either 

during the anoxic oxidation process of mackinawite into pyrite or during the oxidation by air 

of mackinawite into mineral sulfur and iron (oxyhydr)oxide (see diagram of Fig. 1). 

Consequently, the detection of this phase is crucial for the understanding of the evolution 

processes of iron sulfides in natural environments and of the (long-term) effects of MIC.  

Greigite may however be particularly difficult to detect with surface micro-analysis methods 

like SEM or micro-Raman spectroscopy when it is present in small amount and scattered in 

samples. In contrast, magnetic measurement techniques allow analyzing samples in the bulk 

with a very low detection limit (less than ppm). Using these techniques, we were able to 

identify greigite unambiguously, as well as to demonstrate the absence of pyrrhotite and 

smythite. However, magnetic methods restrain the detection of mineral species to magnetic 

ones. This is not the case for the other methods allowing potentially the detection of a wider 

range of minerals. Magnetic methods are also hardly applicable in the presence of metallic 

iron (-Fe) that gives rise to a very intense signal likely to mask the less intense signals due to 

other species. Therefore, due the respective potentialities and limits of each method used in 

the methodological approach developed in this article, their combination is crucial for a 

reliable and exhaustive detection of iron sulfides. 

 

5. Conclusion 

The corrosion of iron fasteners used for assembly led to the occurrence of iron sulfides in the 

wood of two archaeological shipwrecks (2
nd

 and 4
th

 century) extracted from waterlogged 

soils. Greigite and pyrite, predominant in both wrecks, are assumed to result from the 

microbiologically influenced corrosion (MIC) of the fasteners. Considering the burial context 
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of the wrecks, these phases may have formed in situ over time by anoxic oxidation of 

mackinawite, a process promoted by a long-term sulfide producing microbial activity. This 

implies that mackinawite was certainly the first MIC corrosion product formed on the iron 

fasteners in the early times of the burial. Mackinawite was not detected in the samples 

because it has more likely been completely transformed into greigite and pyrite. 

Greigite is interesting to consider because of its central role in different transformation 

processes of mackinawite. Because of it is a magnetically ordered compound, the use of 

magnetic measurement methods is particularly suitable for its detection inside waterlogged 

wood samples. 
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Figures captions 

 

Figure 1: Structural evolution and oxidation processes of mackinawite in anoxic conditions
 

and in aerated conditions. 

 

Figure 2: (a) Picture of vaigre 11 (wreck of Mandirac) with superimposed magnetic 

susceptibility mapping (the squares correspond to analysed samples - the square with the cross 

corresponds to the location of the nail). (b) Magnetic remanence curves of samples e4, e15 

and h20 (red) compared to remanence curves obtained from all analysed samples (grey). (c) 

ESEM micrographs of samples e4, e15 and h20 (chemical contrast).  

 

Figure 3: Raman microspectroscopy spectra (a, b, c) and diffraction patterns (d, e, f) of 

samples e4, e15 and h20 (vaigre 11, wreck of Mandirac). Ma = marcasite, P = pyrite, Gy = 

gypsum, Si = siderite and G = greigite. 

 

Figure 4: (a) Magnetic remanence curves obtained from four samples of LSG4 (red) 

compared to the magnetic remanence curves obtained from vaigre 11 (grey), (b) ESEM 

micrograph (chemical contrast), (c) Raman microspectroscopy spectrum, (d) diffraction 

pattern obtained from a LSG4 sample. P = pyrite. 

 

Figure 5: (a) ESEM micrographs (chemical contrast) of a marcasite crystal (vaigre 11, wreck 

of Mandirac), (b), (c), (d), (e), (f) and (g) Framboidal and euhedral pyrite crystals observed by 

ESEM (chemical contrast) in vaigre 11 and LSG4 samples. 
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Figure 6: ESEM micrographs (chemical contrast) of gypsum crystals observed in the wood 

samples of (a) vaigre 11, wreck of Mandirac (b) LSG4. (c) Diffraction pattern of a wood 

fragment of LSG4. P = pyrite and Gy = gypsum. 

 

Figure 7: ESEM micrographs (chemical contrast) of greigite crystals (a) LSG4 (b) vaigre 11, 

wreck of Mandirac. (c) Typical EDS spectrum obtained from crystals shown on (a). 
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Table 1: Naturally occurring iron(II) sulfides with oxidation states, magnetic properties (Mrs =  Saturation remanence, Hcr = Remanence 

coercivity, Hsat. = Saturation field, N/A = not applicable) and position of Raman bands (st = strong, m = medium, w = weak, br = broad).  

 

Mineral Oxidation state  Magnetic properties 

(single domaine) 

Raman bands (cm
-1

)  

  Mrs 

kA m
-1

 

Hcr 

mT 

Hsat. 

mT 

 

Mackinawite 

FeS  

Fe(+II), S(-II) N/A N/A N/A nanocrystalline mackinawite [14] :  208(m), 282(st) 

well crystallized mackinawite [14]
 
:  208(m), 260(m), 298(st) 

Fe(III)-containing mackinawite
 
[14] : 125(w), 175(w), 256(m), 312(st), 322(st), 355(m, br) 

Troilite 

FeS 

Fe(+II), S(-II) N/A N/A N/A 160, 310, 360 [40] 

Pyrrhotite 

Fe1-xS 

4C(Fe7S8) 

5C(Fe8S9) 

11C(Fe10S11) 

Fe(+II), S(-II) 10-30 

[41] 

40-100
 

[41] 

500-1000
 

[41] 

Raman inactive, no spectrum [42] 
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6C(Fe11S12) 

Greigite 

Fe3S4 

Fe(+II,+III), S(-II) 28
 

[43,44] 

50-75 

[43,44] 

300-500 

[43,44] 

138(w), 188(w), 250(w), 350(st), 365(st)
 
[15] 

Smythite 

Fe9S11 

Fe(+II,+III), S(-II) 

(?) 

23
 
[45] 40 [45] 300 [45] No data 

Pyrite 

FeS2 

Fe(+II), S2(-II) N/A N/A N/A 342(m), 349(w), 377(m), 428(w)
 
[46] 

Marcasite  

FeS2 

Fe(+II), S2(-II) N/A N/A N/A 323(m), 386(m)
 
[47] 

Magnetite 

Fe3O4 

Fe(+II,+III), 0(-II) 29-65
 

[48] 

18-30
 

[48] 

300 [48] 310, 540, 670 [49] 

Maghemite 

Fe2O3 

Fe(+III), O(-II) 36-50
 

[48] 

17-23
 

[48] 

300 [48] 350, 512, 665, 730, 1330 [49]
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Highlights 

 Waterlogged wood-iron assemblies are affected by iron fasteners corrosion 

influenced by sulfides probably supplied by sulfides producing bacteria 

 Greigite an pyrite were detected in the wood of two ancient archaeological 

shipwrecks through a methodological approach suitable for an exhaustive detection 

of iron sulfides in an organic matrix 

 Greigite was characterized by magnetic measurements methods 

 The nature of iron sulfides present in archaeological shipwrecks is related to the 

duration of the burial in anoxic conditions and of the exposure to sulfides 

 Waterlogged archaeological wood-iron assemblies testify of the evolution of iron 

sulfides in sulfides containing media, starting from the precursor corrosion product 

mackinawite. 
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