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Abstract: The Wouri estuary is located in the Gulf of Guinea on the Atlantic coast of Cameroon’s
coastline plain (3◦49′ and 4◦04′ north latitude and 9◦20′ to 9◦40′ east longitude), and is strongly
influenced by coastal dynamics that have remained unquantified over a long period of time. This study
analyzed the historical evolution of the Wouri estuarine coastline between 1948 and 2012. Variations
in the estuarine evolution of the Wouri were studied from (i) minute topographic extracts from 1948,
(ii) 1996–1999 nautical charts, and (iii) 2012 spatial map vectors. The net temporal spatial variation
rates were calculated using the statistical methods of the Digital Shoreline Analysis System (DSAS).
These change rates were also calculated over two time intervals (1948–1996 and 1996–2012) and
over a 64-year period (1948–2012). The study reveals highly disparate results. Indeed, kinematics
show that the Wouri estuary was dominated by erosion in its downstream section, with 262.83 ha for
−3.2 m/year and 110.56 ha for −5.8 m/year between 1948–1996 and 1996–2012 respectively, and by
accretion on the other hand in its upstream section, with 239.17 ha for 4.3 m/year in zone 5 between
1948–1996 and 150.82 ha for 12.6 m/year in zone 4 between 1996–2012. Thus, over the 64-year period
(1948–2012), we have a dominance of variation by erosion downstream and conversely by accretion
upstream, marked by the presence of amplifying factors (anthropogenic pressure and climate change)
of the rate of variation of morphological evolution at the beginning of the 21st century, as compared
to the middle-20th century. The observed development of sediment loss and accumulation, both
influences and will influence, the sediment regime along the Wouri estuarine coastline. There is a need
to develop a systematic sub-regional coastal surveillance activity to effectively manage Cameroon’s
coastline system.

Keywords: shoreline change; erosion; accretion; Wouri estuary; climate change

1. Introduction

In recent years, shoreline position changes have become one of the major environmental problems
affecting coastal zones worldwide. Indeed, 24% [1] to 70% [2] of the world’s sandy beaches are
estimated to be under erosion. The West African coasts, largely composed of estuaries and beaches, are
no exception to this trend. According to the authors of [3], retreat in the sandy coastline in the Gulf of
Guinea between Côte d’Ivoire and Cameroon is very significant, with rates of around 1 to 5 or even
10 m/year. This situation has remained very worrying since the construction of marine works in the
1960s and due to the importance of human interventions on the coastal fringe [4,5], not to mention
the impact of climate change [6,7]. This is the case of the Wouri estuary, left in its natural state until
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the beginning of 1940, which has been the subject of major regional development in recent decades.
This development was marked by the extension and modernization of the Douala Autonomous Port,
the creation of industrial areas for railways and infrastructures [8]. These development operations
have contributed to the economic development of this environment, but they have also destabilized
the natural balance of this coastal area, which now supports a high density of infrastructure. Also,
being open to the Atlantic Ocean, the Wouri estuary is subject to marine turmoil, and as a result, has
experienced significant variations in the coastline, with a retreat of about 3 m per year, at the risk of
losing a mangrove island to the sea (89%) [9]. This has forced hundreds of people to abandon their
homes [10].

In this context, studies by the authors of [11–13] have addressed the spatial and temporal evolution
of the degradation of the vegetation cover of extracts from the Wouri estuarine coastline (Cameroon)
in the face of climate change, in order to estimate the retreat rates of the coastline and assess their
vulnerability. The authors of [14] conducted a study on the assessment of the Cameroonian coastline
to understand the general trend of coastal evolution and showed the significant areas of change
(accretion/erosion) observed in an extract from the Wouri estuary. The authors’ research was based
on a series of Landsat images taken between 1975 and 2016. The results of such studies contribute
to the development of coastal management policies and promote the development of sustainable
management practices in the coastal regions of developed countries. However, in Africa and particularly
in Cameroon, no study has yet been the subject of a sustainable coastal zone management response,
due to the fundamental lack of reliable historical coastal data available. Studies that have already
carried out on the coastal zone of Cameroon have used Landsat image series, available only since 1972.
The Wouri estuary, a coastline area of high economic interest in Cameroon since the urban and tourism
boom, with accelerated population growth (5% per year) [15], has not yet been the subject of a full
study of the evolution of its coastal area. So, in response to the development challenges for better and
sustainable management of the estuary coastline of Wouri in Cameroon, a study such as ours is both
urgent and necessary.

In this study, we use ancient archives (topographic minutes), marine charts and spatial map vectors,
to analyze the evolution of the Wouri estuarine coast over a period of 64 years. We use geospatial
techniques, a geographic information system (GIS) and analysis of several statistical approaches to add
to the DSAS model [16]. For analysis, several statistical approaches have been used to determine the
rates of shoreline changes, including end point rate (EPR), linear regression rate (LRR) and weighted
linear regression rates (WLR) [17–20]. The main objective of this work is to map and quantify the
erosion and accretion areas and to evaluate the long-term rates of changes along the Wouri estuarine
coastline (Cameroon).

2. Study Area

The hypo-synchronous Wouri estuary [21,22] covers an area of 1200 km2 and is a vast wetland
30 km long and almost as wide, open to the Atlantic Ocean [23]. Located at 4◦0′1” north latitude and
9◦37′15” east longitude, it occupies the heart of the Douala sedimentary basin (19,000 km2 of which
7000 km2 emerged), centered on an old syncline with pan-African mylonites, and the axis of this is
where the lower Wouri flows [24]. The estuary is home to the Autonomous Port of Douala (PAD),
the largest port in the country and one of the most important in Central Africa. Bound to the north
by Douala and to the south by Souellaba, this geographical area is drained by three coastal rivers:
the Dibamba, the Wouri and the Mungo (Figure 1). It enjoys an equatorial coastal climate with two
dry seasons from October to May interspersed with two rainy seasons. The region receives 3.5 to
4.5 m of precipitation per year, with an average temperature of 26.4 ◦C. The air is almost constantly
saturated (99% in the rainy season and 80% in the dry season). Tropical cyclones are unknown despite
the strong influence of tides, of the semi-diurnal type, with an average amplitude of 2.5 m [25]. In this
environment, altitude differences remain low, reliefs rarely exceed three meters, and there are residues
of sandy cords, small sandy islands and mio-pliocene gravels, sometimes bearing an iron armor.
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The vegetation is a mangrove composed of Rhizophoras up to 40 m high and avicennias that colonize
the intertidal spaces of the fine sedimentation grounds [9,26,27]. All parts of the estuary that are subject
to fine sedimentation from fluvial origin have dense and extensive mangroves. The sedimentation and
erosion pattern is determined by hydrological and geomorphological factors that show diurnal and
seasonal variations under the influence of tides, currents and freshwater flows [24].
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Figure 1. Estuary Wouri in the Atlantic coastal Cameroon.

3. Materials and Methods

3.1. Data Sources

In this study, the data sources used to detect shoreline changes in the Wouri estuary are
the following:

Topographic surveys of the Shom archives (French Hydrographic and Oceanographic Service)
of the Wouri estuary from 1948 (or 1949/1950) to the present date, of various spatial scale, were
georeferenced, then given geometric correction with Scanbathy software [28], mosaicked into one, and
saved as an uncompressed TIFF using WGS84/32 North in UTM (Figure 2A and Table 1). The planimetric
accuracy of 16 m was quantified by comparing the locations of the reference points (6 points) on
the historical map with their true locations, using the current image provided by the Google Earth
program, projected in UTM 32 north on WGS84 (Figure 2A and Table 1). These topographic surveys
are obtained by the triangulation method targeting landmarks (e.g., lighthouses, churches, temples,
bridges). Hydrographic engineers identify the land landmarks for which they calculate the distances
and angles between them. Once at sea, at least three of these landmarks are used to precisely locate the
contours of the coast on a map. The authors of [29] explain that engineers “draw by show of hands,
according to the method of identifying between the sufficiently close milestones on this subject facing
the resulting dangers.” Upgrading problems are reduced to their simple expression [30].
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Table 1. Characteristics data.

Date 1948 or (1949, 1950) 1996 (1999) 2012

Data Topographic surveys Nautical chart surveys
N◦7578

Digital topographic
space map S201201300

Scale
1/10,000 (1948)
1/15,000 (1949)
1/25,000 (1950)

1/40,000 -

Type Raster (Geo Tiff) Raster (Geo Tiff) Vector

Nautical chart surveys N◦7578, from the archives of the Shom [31] describing the coastline from
the interpretation of SPOT satellite data (CNEC, National Environmental Monitoring Centre 1996) and
ERS-1 and ERS-2 satellites (1994–1999) after treatment (Figure 2B and Table 1) (ERS, European Remote
Sensing satellite system). Regarding the precision of the calculations between the two georeferences
(SPOT and ERS), as per [32], the results on the city of Douala, it can be seen that the concordance of
the coordinates is satisfying (10 m of X and 30 m Y deviations) compared to the system resolutions
(respectively 25 and 20 m for ERS and SPOT). However, there is a systematic deviation along the
Y axis of 35 m. Conversely, after comparing the positions of the reference points (6 points) on the
nautical chart with their true positions using the current image provided by the Google Earth program,
projected in UTM 32 north on WGS84, the planimetric accuracy is 27 m. In short, the planimetric
accuracy of these images is guaranteed at 35 m.

A digital topographic space map S201201300 of the Wouri estuary and Bioko Island (Africa) is
created, from panchromatic optical and radar imagery, multispectral images, photographs, books on
spatio-preparation, marine charts, lifting doubts and Google Earth after treatment (Figure 2C and
Table 1). According to the authors of [33], this map is geo-referenced in the equatorial Mercator
projection on WGS84 and has an absolute planimetric accuracy of less than 20 m. This is readable in all
geographical information systems.

3.2. Shoreline Extraction and Error Evaluation

In this study, the most common detection technique applied to visible reference lines (shorelines)
on documents (2A and 2B) made by surveyors or hydrographers during its preparation was used and
the shorelines were digitized. For the digital topographic space map S201201300, the shorelines were
derived from clearly visible coastal elements (using true or false color images) and by the application
of digital processing techniques (geometric and radiometric) of images and photo-interpretation [33].
After obtaining digital shoreline data, they were compiled in a GIS environment (Arcgis 10.5 software)
and analyzed by the Digital Coastal Analysis System (DSAS) developed by the United States Geological
Survey (USGS).

Before any analysis, the evaluation of errors in relation to each shoreline position is required and
must be calculated before drawing conclusions on the evolution of the shoreline [33]. Indeed, since
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data sources are second-hand and from satellites, they include sources of uncertainty related to the
quality of the data used (pixel error (Ep)), geo-referenced images (RMSE (ERMs)), coastal extraction
and digitization (digitization error (Ed)) and planimetric uncertainty (EP). These errors are considered
random and uncorrelated, the total of the errors (Et) is given by the square root of the sum of the
squares of the different variables (Equation (1)) [18,34]:

Et = ±
√

Ep2 + ERMs2 + Ed2 + EP2 (1)

The total error was estimated from two sources (Table 2): (1) the total shoreline position error
was calculated for three dates; (2) the measured (Em) and annualized (Ea) transect error associated
with the rate of shoreline change at a given transect. It was calculated over two short time periods:
(1948–1996, 1996–2012) and over a global period (1948–2012). The annualized error was calculated
using the following Equation (2):

Ea =

√
Et12 + Et22 + Et32

Total period (Years)
(2)

Table 2. Summary of errors and estimation for periods of study.

Date 1948 or (1949, 1950) 1996 (1999) 2012

Error pixel (Ep) 1 4 /

RMS ortho-rectification (ERMs) 16 27 /

Digitizing error (Ed) 5 11 /

Planimetric Error (EP) / 35 21

Total error (Et) 17 46 21

Year 1948–1996 1996–2012 1948–2012

Measured Error (Em) (m) 49 51 27

Annualized Error (Ea) (m/64 years) 0.83

The uncertainty of end point rate
calculation (ECI) (m/year) 1 3.2 0.42

The annualized uncertainty over a time period of 64 years is therefore 0.68 m/year (Table 1).
Recently, the uncertainty associated with the computation of the end point rate (EPR) is automatically
calculated in the application of DSAS. The result of this computation is specified as confidence of the
end point rate calculation (ECI) [16]. The ECI is calculated using Equation (3):

ECI =

√
EtA2 + EtB2

date (A) − date (B)
(3)

where (EtA) is the uncertainty of the position of shoreline A, (EtB) is the uncertainty of the position of
shoreline B, date (A) is the date of shoreline A and date (B) is the date of shoreline B.

Again, the error (ECI) is calculated on two short periods of time (Table 1): 1948–1996, 1996–2012,
and on a global period (1948–2012).

3.3. Analysis of Coastal Variations

The model DSAS (5.0) developed by the USGS [16] was used to estimate the shoreline change
rates of the Wouri estuary. The DSAS is based on the measurement of the basic method used for
calculating change rate statistics for a time series of shores and carried out in four steps: (1) shoreline
and (2) baseline digitization, (3) generation of transects, and (4) computing the shoreline change rate.
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The 1948 (or 1949, 1950) and 2012 coastlines were stored in a geodatabase with the WGS 84/UTM zone
32N coordinate system. The baseline, constructed to serve as a starting point for all transects derived
by the DSAS application, was created either offshore or onshore and parallel to the general trend of the
shorelines. Intersections of shore transecting along the baseline were then used to calculate the rate of
change statistics [35]. Based on the DSAS parameters, about 8400 transects were generated every 10 m,
perpendicular to the baseline.

In this study, the net shoreline movement (NSM), end point rate (EPR), linear rate regression (LRR)
and weighted linear regression (WLR) were used for calculating the rate of change of the coastline.
The NSM reports the distance between the oldest and the youngest shorelines. The EPR was calculated
by dividing the distance (in meters) separating two shorelines (NSM) by the number of years between
the dates of the two shorelines, in Equation (4):

EPR =
D1−D2

t1− t0
(4)

where: D1 and D2 represent the distance separating the shoreline and baseline, and t0 and t1 are the
dates of the two shoreline positions.

The second method used for calculating erosion rates is through LRR. This method consists of
fitting a least square regression line to multiple shoreline position points for a particular transect.
The shoreline change rate along each transect for all periods (1948–2012) was computed by plotting
the points where shorelines are intersected by transects and calculating the linear regression equation,
which has the form: y = a + bX, where, (y) represents the distance, in meters, from the baseline (1948),
(X) shoreline dates (years), (b) represents the shoreline change rate and (a) is the y-intercept.

In this study, the R-squared, R2 > 0.8 has been retained as the limit of certainty. The uncertainty of
the reported rate is considered with a confidence interval (LCI) of 95%. In contrast, with the WLR,
more reliable data are given greater emphasis or weight towards determining a best-fit line with a
confidence interval of 99.9% [19]. The WLR rate is determined by plotting the shoreline positions
with respect to time. The weight (w) is defined as a function of the variance in the uncertainty of the
measurement (e) [16], as in Equation (5):

w = 1/e2 (5)

Considering the overall error (Table 2), changes in Wouri estuarine shoreline are shown in Table 3
with NSM (m) and EPR, LRR, WLR (m/year) and for a detailed analysis following the methodical
flowchart summarized in Figure 3, the Wouri Estuary was subdivided into 8 zones (see Figure 4).

Table 3. Variation of the estuarine Wouri shoreline.

Periods Change Shoreline Erosion Stable Accretion

1948–1996 m <-49 ±49 >49

m/year <-1 ±1 >1

1996–2012 m <-51 ±51 >51

m/year <-3.2 ±3.2 >3.2

1948–2012 m <-27 ±27 >27

m/year <-0.42 ±0.42 >0.42
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4. Results

4.1. Shoreline Kinematic of Wouri Estuary between 1948–2012

The superposition of the 1948–2012 coastlines (Figure 5) shows a variability in spatial evolution
over time, from the upstream (Douala) to downstream (Cape Cameroon, Souellaba). This variability
presents the amplitudes of the observed time lags and is defined as the difference between the position
of the rearmost line on the land side, and the most advanced one in the sea. Using the DSAS model,
we quantify and qualify the kinematics of the Wouri estuary coastline.
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4.2. Shoreline Changes in the Wouri Estuary

The analysis of the shoreline evolution of the Wouri estuary from 1948 (or 1949, 1950) and 2012
shows that over time and zones, the estuarine coastal Wouri has changed significantly (Figure 4).
These variations are expressed by erosion and accretion. A thorough analysis of changes using the EPR,
LRR, LWR and NSM methods have allowed for the construction of spatiotemporal maps, histograms
and tables.

4.2.1. Period 1948–1996

The statistical results obtained during this period of time (48 years) on the whole study area
show that the shoreline oscillates between retreat–stability–advanced and retreat–stability. Along the
Wouri estuarine coastline, 29.13 km or 35% of transects are eroded, while 19.36 km or 23% of transects
increase, and 35.06 km or 42% of transects remained stable (Figure 6 and Table 4). In detail, zone 1
shows a large dominance of variation by erosion, with an average erosion rate of −3.2 m/year and zone
5 shows a large dominance of variation by accretion with an average accretion rate of 4.3 m/year (EPR)
(Figure 6a). Also, the NSM method (Figure 5b and Table 4) emphasizes that the maximum eroded
transect distance of 518 m with a rate of evolution of 12.06 m/year is observed in zone 3 and conversely
the maximum accumulated transect distance of 1089 m with a rate of 23.71 m/year is observed in zone
5. The significant accumulation observed in zone 5 is due to the backfill for the expansion of the PAD
for reasons of economic development, which began in the early 1980s.
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Table 4. Statistical data of the study area during 1948–1996.

Zones

Shoreline
Classification Shoreline Statistics 1 2 3 4 5 6 7 8

EPR Mean -3.2 -2.2 -5.8 -0.6 -5.8 -2.0 -0.4 -1.4

Erosion NSM Min -321.5 -238.8 -517.8 -92.5 -471.9 -245.1 -71.4 -139.7

Transects 1352 272 203 240 77 328 185 256

EPR Mean 0.8 2.4 1.7 4.3 1.5 0.5 0.5

Accretion NSM Max 74.0 199.7 195.1 1089.0 182.9 209.2 35.8

Transects 51 0 250 330 872 250 139 44

Stable Transects 327 101 180 659 529 685 683 342

4.2.2. Period 1996–2012

During this period, the estuarine coastline of Wouri Cameroon oscillates between
stability–retreat–advanced and stability-advanced. Essentially, this period is marked by a dominance
of no variation of the coastline, with 86.45 km or 79% of the transects analyzed being stable, versus
11.26 km or 10% of transects being eroded, and 12.21 km or 11% of transects being in accretion. As in
the previous period, zone 1 shows a large dominance of variation by erosion with an average erosion
rate of −5.8 m/year, unlike the dominance of variation by accretion with an average accretion rate of
12.6 m/year observed here in zone 4 (Figure 7a). The NSM method (Figure 7b and Table 5) points out
that the maximum eroded transect distance of 428 m, with a change rate of 31.92 m/year, is observed in
zone 1 and the maximum cumulative transect distance of 996 m with a rate of 69.35 m/year is observed
in zone 8. In detail, different from the observations of the previous period, we observe during this
period an important evolution of the accretion in zone 4, and the absence of variation observed in zone
5, due to the construction of the dike of the PAD. Furthermore, in zone 8, we also observe an inversion
of the tendency of variation of the erosion for the accretion.
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Figure 7. Shoreline evolution between 1996 and 2012 in the Wouri estuary, (erosion and accretion)
computed by the EPR (a), NSM (b) methods.

Table 5. Statistical of the study area during 1996–2012.

Zones

Shoreline
Classification Shoreline Statistics 1 2 3 4 5 6 7 8

EPR Mean -5.8 -0.4 -0.7 -3.2 -1.8 -1.8 -2.0 -0.2

Erosion NSM Min -427.7 -9.2 -23.4 -51.0 -95.3 -103.4 -42.4 -4.3

Transects 760 18 72 0 108 151 8 9

EPR Mean 0.2 1.1 3.2 12.6 2.1 1.2 1.3 12.1

Accretion NSM Max 1.5 25.7 115.3 371.9 35.5 168.9 68.9 996.8

Transects 2 4 78 687 3 235 102 110

Stable Transects 920 520 1155 784 604 1113 1549 2000

4.2.3. Period 1948–2012

During the overall period 1948–2012 (64 years), the results show a coastline position that varies
between retreat and advanced, in proportion to 37.4% and 39.4% of transects analyzed respectively.
Zone 1 (Cape Cameroon) at the mouth of the estuary is largely dominated by erosion with an average
rate of change of −3.8, −3.7, −3.8 m/year (EPR, LRR, WLR). Zones 4 and 5 (Douala) upstream of the
estuary are dominated by accretion, with average changes rates of 3.9, 3.3, 3.7 and 3.4, 3.4, 3.3 m/year
(EPR, LRR, WLR) respectively (Figure 8 and Table 6). The maximum eroded distance (−552 m) with
a rate of change of −8.71 m/year is recorded in zone 3, and conversely, 1115 m (14.16 m/year) of the
maximum advanced distance recorded in zone 5. The coastline in the Wouri estuary reveals that over
the past 64 years, 37.24 km of the coast has been eroded, compared 32.91 km that has been in accretion
and the remaining 19.42 km has shown no variation.
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Figure 8. Shoreline evolution between 1948 and 2012 in the Wouri estuary, (erosion and accretion)
computed by the EPR (a), NSM (b) methods.
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Table 6. Total statistics of the study area during 1948–2012.

Zones

1 2 3 4 5 6 7 8

Shoreline length that recorded erosion (NSM (m))

Min -448.7 -275.2 -552.1 -46.9 -474.5 -371.3 -58.3 -54.5

Shoreline length that recorded accretion (NSM (m))

Max 79.8 0 205.9 619.1 1115.2 196.6 105.5 850.9

Mean rate erosion (m/year)

EPR -3.8 -2 -4.4 -0.3 -2.6 -2.6 -0.3 -0.5

LRR -3.7 -2.1 -4.6 -0.4 -3 -2.5 -0.4 -0.6

WLR -3.8 -2 -4.5 -0.3 -2.7 -2.6 -0.4 -0.6

Mean rate accretion (m/year)

EPR 1.3 - 1.5 3.9 3.4 0.7 0.8 2.7

LRR 1.2 - 1.9 3.3 3.4 0.9 0.7 2

WLR 1.3 - 1.6 3.7 3.3 0.7 0.7 2.5

Total transects that recorded erosion

EPR 1482 300 219 191 163 303 253 213

LRR 1507 297 225 212 137 307 313 252

WLR 1488 300 217 206 154 300 292 209

Total transects that recorded accretion

EPR 7 0 297 775 945 584 422 261

LRR 6 2 265 737 971 428 373 221

WLR 6 0 276 755 944 507 404 247

Total transects that recorded as stable

EPR 174 59 136 247 339 391 372 224

LRR 150 60 144 264 339 543 361 225

WLR 169 59 141 252 349 471 351 242

% of total transects that recorded erosion

EPR 47.4 9.6 7.0 6.1 5.2 9.7 8.1 6.8

LRR 46.4 9.1 6.9 6.5 4.2 9.4 9.6 7.8

WLR 47.0 9.5 6.9 6.5 4.9 9.5 9.2 6.6

% of total transects that recorded accretion

EPR 0.2 0.0 9.0 23.5 28.7 17.7 12.8 7.9

LRR 0.2 0.1 8.8 24.5 32.3 14.3 12.4 7.4

WLR 0.2 0.0 8.8 24.1 30.1 16.2 12.9 7.9

% of total transects that recorded as stable

EPR 9.0 3.0 7.0 12.7 17.5 20.1 19.2 11.5

LRR 7.2 2.9 6.9 12.7 16.3 26.0 17.3 10.8

WLR 8.3 2.9 6.9 12.4 17.2 23.2 17.3 11.9
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4.3. Surface Balance Sheets of Study Area Beaches and Total Coastal Sediment Budget

The measurement of linear changes in the Wouri estuarine shoreline, complemented by surface
sediment budgets calculation, offers a vision of the coastal kinematics in two dimensions. In this
regard, surface sediment budgets for all study areas in the Wouri estuary for each period have been
recorded and are presented in Figure 9. The following results show spatial and temporal variability
along the coastline. According to these results, the areas of lost areas (113.3 ha) dominate by −0.5 ha
those obtained by accretion (112.3 ha), and the overall sediment budget of 64 years is negative. Zone 1,
which is largely dominated by erosion, has a sediment loss of about 378.8 ha (−5.92 ha/year) and
conversely, zones 4 and 5 have gains of 183 m (2.86 ha/year) and 212.3 (3.32 ha/year) respectively
between 1948–2012.
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Figure 9. Sedimentary budget along the coastline of the Wouri estuary for each period.

During these two periods, 1948–1996 and 1996–2012, studied, losses were largely recorded in zone
1, with 110.4 ha of land lost in 16 years, versus 259 ha in 48 years. Conversely, zones 5 and 4 recorded
strong gains in sedimentary surface area. Between 1948 and 1996, a total of 212.66 ha of surface gains
were recorded in zone 5, due to the embankments for the expansion of the PAD. Between 1996–2012, a
total of 150.92 ha of surface gains were recorded in zone 4. Also, in zone 8, we recorded a reversal of the
trend between the two periods as we moved from an erosion zone (−22.6 ha lost between 1948–1996)
to an accretion zone (54.42 ha gained between 1996–2012).

5. Discussion

The global evolution of the Wouri estuarine coast, between 1948 and 2012, shows a slightly positive
evolution rate because it is subject to accretion (39%), erosion (37%) and stability (23%). The evolution
rates, obtained by three statistical approaches (EPR, LRR and WLR), are very similar throughout
the study zones (Figure 10 and Table 6). After comparing the EPR vs. LRR, EPR vs. WLR values,
the R-squared values obtained between 1948 and 2012 indicate a very good correlation between the
dependent and independent variables (Figure 10a,b). This correlation results obtained in studies on
the change of the sandy coast are similar to those of [19,36,37].
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Figure 10. (a,b) Comparison of shoreline rates obtained by different statistical methods (EPR, linear
regression rate (LRR) and weighted linear regression rates (WLR)) for all transects of the study area.
(c) The EPR, LRR and WLR values (m/year) calculated along all transects (8340) and zones (8) of the
study area during the whole period (1948–2012).

In detail, this study notes that, on the one hand, between the period 1948–1996, 35% or 29.13 km of
the area studied demonstrates erosion, strongly represented in the downstream section of the estuary
(zone 1). Additionally, in 23% or 35 km of the area studied, accretion is strongly represented in the
upstream of the estuary in zone 5, versus 42% or 35.06 km of stability, which is strongly represented
in zones 6 and 7. On the other hand, during the period 1996–2012, 10% or 11.26 km of the eroding
surface is still strongly represented in the lower section of the estuary (zone 1) and 11% or 12.21 km
of accretion is strongly represented in zone 4, versus 79% or 86.45 km of stability, which is strongly
represented in zone 8. Wouri estuary shoreline changes, based on these periodic subdivisions, are
controlled by natural processes, human activities and climate change (Figures 11–15).
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stands for trend (3.4 mm/year).

The Wouri estuary, by virtue of its configuration, is open in the southern section and undergoes
lateral and frontal erosion of the coastline (natural erosion), due respectively to marine agitation as a
result of external swells and wind flaps, and to migration from the mouth [39]. This may explain the
variation of 379 ha in 64 years, due to erosion in zone 1 (Cape Cameroon). According to the authors
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of [14], significant changes in the position of the coastline of the Wouri estuary were observed at the
entrance to the estuary, namely the “Cape Cameroon” area, because it experienced a coastal retreat of
more than 300 m for 30 years between 1986–2015. This dominance of variation by erosion in the area of
the mouth has also been observed in other places in the world [40–49].

In addition, the dominance of variation by erosion can be explained by:
Sea level rise
Sea-level rise caused by climate change in the 21st century is exposing land previously inaccessible

to waves and currents and is accompanied by severe coastal erosion that is slowly submerging the
coasts of the Gulf of Guinea [50]. According to the authors of [4], the risk of coastal erosion in the Wouri
estuary is reinforced by the trend of sea-level rise caused by global climate change and amplified by
subsidence movement. The engulfing of the communication relay antenna installed in the continental
part of Cape Cameroon (zone 1) (Figure 12) in 1992 marks the intensification of coastal erosion observed
at the beginning of the 21st century. This suggests that Cape Cameroon (zone 1) is highly vulnerable to
the increased erosion associated with rising water levels. This confirms the observations of the authors
of [11], and the 2005 communication of the Ministry of Environment on the loss of land by flooding of
about 4959 hectares, for a sea level rise of 20 cm, or 4.5% of the total area of mangroves [10]. If this
increase continues, the consequences for the Wouri estuary coast would be enormous, because the
rise in sea level due to global warming leads to an increase in mangrove losses from the Cameroonian
coast (estimated at 300 ha per year) [51]. Very few studies have been conducted on the sensitivity
of Cameroonian mangroves to climate change. One of the most recent is the pilot study on climate
change impacts and adaptation measures on mangroves in the Wouri estuary [52]. This study used a
combination of expert advice, the use of climate models and similar studies to assess the impacts of
climate change on mangroves in the Wouri estuary. The floodplain is estimated at 49.5 km2 for a sea
level rise (SLR) of 0.20 m, and 330 km2 for a SLR of 0.90 m, requiring the forced displacement of 57.8%
of fishermen in the mangrove area. In the same vein, Ellison (2012) in her study of the vulnerability of
mangroves in the Cameroonian estuary to climate change, estimated that the coastline has declined by
about 3 m per year over the past three decades, and that an offshore mangrove island would have
suffered 89% loss. So, at the coastal level, mangrove degradation may increase, coastal erosion will
accelerate further and the risk of partial or total flooding will increase. The loss of land will then lead
to the destruction of sandy beaches and consequently, localities such as Cape Cameroon and others
will be at risk of disappearing.

Mangrove Harvesting and Sand Mining
Population growth in the Wouri estuary is associated with increased erosion because of destroying

mangroves [7,9,11,14,38,53] and sand extraction activity [4,38]. This situation could be verified on the
one hand by comparing two satellite images at different times. Indeed, by comparing the images of
2000 and 2014 (Figure 11), we can visualize a strong expansion of human installations in 2014 and the
dynamics of land use on mangrove degradation. This observation shows the high population growth
and the pressure on mangroves responsible for the evolution of geomorphological changes [9,11,27].
On the other hand, the extraction of sand in a disordered way is an observed daily occurrence
(Figure 13). This sand extraction activity is carried out in the Wouri estuary, without distinction of
areas, so that some sites are overexploited, reducing the volume of the beach, weakening the beach and
thus increasing erosion. If nothing is done to coordinate these activities, the risks of erosion observed
will continue to increase.

According to the authors of [39], the mouth center of the Wouri estuary functions as an open
lagoon and is protected from the open sea by a unique sandy barrier, frequently cut by storm waves,
but which is fairly resistant to erosion despite its narrow width. This shows the high sedimentation
character encountered in the upstream section of this estuary [25,54]. In this study, this section
showed, on the one hand, a strong accretion in zone 5 marked by embankments for the expansion
of the PAD and the construction of industrial companies between 1948 and 1996 (212.66 ha) (zone 5)
(Figure 14), accompanied by channel dredging works multiplying the turbulences of the environment
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(resuspension) and promoting the significant accretion of 150.92 ha recorded in zone 4 between 1996
and 2012. This observation corroborates with the variations towards accretion upstream of Lobé Falls
following the construction of the Kribi Port [14], and confirms the work of the authors of [25,55], who
show that the access channel (upstream) to the PAD is highly silted and that the quantity of dredged
sediments greatly exceeds the forecasts of previous studies [54]. This same scenario is observed in
several port cities around the world [43,56,57].

Additionally, an inversion of the erosion variation trend for accretion was observed in zone 8,
suggesting a rise in dredging waste dumped downstream of the estuary caused by the currents stopped
at the tip of zone 8 (Souellaba).

The geospatial methods and automatic statistical calculation of the DSAS model, for the analysis
of temporal spatial evolution variations in this study, proved to be very effective and advantageous.
The estuarine coastline of Wouri Cameroon, represented by coastline features extracted from
topographic minutes, nautical chart and spatial chart vectors, was studied by transects spaced
10 m apart generated by the DSAS model. According to the results obtained, this study provides local
coastal managers and decision-makers with a reliable decision-making tool for the management of the
Cameroonian coast.

6. Conclusions

The analysis of the evolutionary dynamics of the Wouri estuary (Cameroon) between 1948 and
2012 is of major interest for the qualification and quantification of evolutionary variations that have
naturally and economically affected the estuarine environment. The observed morphological changes
were calculated according to three periods: 1948–1996, 1996–2012 and 1948–2012, using geospatial
methods and the automatic statistical calculation of the Digital Coastal Analysis System (DSAS).
The results reveal an inhomogeneous evolution at the spatial and temporal scale. This is justified
on one hand by an erosion dominance of 262.83 ha for −3.2 m/year and 110.56 ha for −5.8 m/year
observed in zone 1 between 1948–1996 and 1996–2012 respectively, versus an accretion dominance of
239.17 ha for 4.3 m/year observed between 1948–1996 in zone 5 and 150.82 ha for 12.6 m/year between
1996–2012 in zone 4. On the other hand, a non-variation dominance of 17.27 ha in zone 7 and 30.8 ha in
zone 8 between 1948–1996 and 1996–2012 was shown, respectively. Also, in zone 8, we observed an
inversion of the trend of erosion variation between 1948 and 1996 for accretion between 1996 and 2012.
This suggests that dredge discharges downstream of the estuary are rising.

After analysis, this study reveals the presence of amplifying factors (anthropogenic pressure and
climate change) in the rate of change in morphological evolution at the beginning of the 21st century
compared to the middle of the 20th century. An example is the photo-interpretation showing the high
population growth and pressure on mangroves, the high rise of water in zone 1 (Cape Cameroon),
sand mining and the backfilling in zone 5 (Douala) for the expansion of the PAD and the construction
of industrial companies. Thus, the temporal spatial variations of the Wouri estuarine coast between
1948 and 2012 show a variation by erosion and accretion. According to the authors of [58], average
erosion or accretion rates above ±2 m/year in zones can qualify them as zones highly vulnerable to
erosion or accretion and should be confined as high risk zones. Therefore, significantly high rates and
areas of erosion in zone 1 qualifies the area as being high-risk, and deserves the highest priority to
mitigate the effects of erosion due to human activities observed at the beginning of the 21st century.
Conversely, zones 4 and 5, with very high accretion rates and area, confirm the strong silting of the
channel as shown by the authors of [25,55,59]
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