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Abstract

Modern control applications justify the need for improved techniques capable of coping with

the non-stationary nature of measured signals while being able to monitor systems in real-time.

Empirical Mode Decomposition (EMD) is known for its efficiency in time domain analysis of

multi-component signals through Intrinsic Mode Functions (IMFs) extraction. Recent years

witnessed the introduction of Sliding Window EMD (SWEMD) capable of analyzing signals in

real time applications. However, complex signals require several sifting iterations while a rather

increased number of IMFs might result in impracticality for on-line applications. This paper

introduces a new modified faster SWEMD capable of extracting harmonics from non-stationary

signals in real-time operation. The method uses the traditional EMD properties in the first pass

for a small number of sifting processes. In addition, a new section is added to the algorithm

based on inflection point tracking of the residue derivative from the first pass is added, in

order to track low frequency waves and render the analysis faster. The method is validated for

non-stationary signals with and without added coloured noise and applied on measured turbine

side angular velocity for harmonic extraction in wind turbines as an application. The proposed

method may well be used for fault detection and disturbance rejection in mechanical systems.

Keywords: Signal analysis, non-stationary, on-line analysis, EMD, SWEMD, harmonics,

wind turbine.
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1. Introduction

Environmental concerns and worldwide policies aiming to reduce greenhouse gas emission

shifted the focus of generating power to renewable energy sources (hydro, solar, tidal, wind,

etc.). Wind energy attracted increased attention for its abundance and the evolution of sup-

porting technologies. Wind turbines rely on the wind speed to convert its kinetic energy into

mechanical movement which finally produces electrical energy. Despite increasing global in-

stallation [1], production cost is still high compared with conventional power sources which

requires greater investment leading to increased cost per unit of generated power. Moreover,

high operation and maintenance costs remain a great challenge specially in off-shore wind tur-

bines where transmission lines cost and logistical difficulties are encountered [2]. Thus the need

for health/condition monitoring strategies in conjunction with advanced control methods for

efficiency improvement while reducing fault occurrence rate and maintenance cost [3, 4]. This

extends to all kinds of systems where faults need to be detected and rejected, such as electric

vehicles, robotics, etc.

Early research investigated stationary operation of wind turbines. Scenarios included con-

stant wind speed or step changing wind speed. The aim is to study the behavior of wind

turbines under different faulty conditions. Traditional signal processing techniques have been

extensively used in the literature while some advanced techniques were developed to cope with

the research at hand [5]. However, real time operation sees randomly changing conditions and

factors. In fact, factors influencing the wind turbine operation such as weather, temperature,

wind speed, load, etc. are unpredictable and non-stationary processes. In this case, conven-

tional signal processing methods such as the Fast Fourier Transform (FFT) became inefficient

in meeting system requirement for non-stationary applications. In this prospect, harmonic and

oscillation detection is used by operators to assist control loops in compensating unwanted har-
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monics in the system. Existing oscillation detection and isolation techniques in the literature

can be divided into on-line and off-line techniques for stationary and non-stationary systems.

Off-line methods include Integral Absolute Error (IAE) [6], Auto covariance Function (ACF)

[7], spectral envelope method [8]. Recent off-line methods for non-stationary signals include

but not limited to Wavelet Transform, Discrete Cosine Transform (DCT) [9], and Empirical

Mode Decomposition (EMD) [10].

Despite good harmonic tracking and efficiency in signal processing and research applications,

the aforementioned off-line techniques needed upgrading for on-line use. Most off-line techniques

can be implemented on-line while using sliding windows. Methods with sliding windows are

being used to cope with instantaneous signal characteristics change. Sliding window approaches

include but are not limited to EMD [11], DCT [12]. The EMD was proposed by by Huang [13]

for nonlinear and non-stationary signals. The EMD breaks non-stationary signals into mono-

components known as Intrinsic Mode Functions (IMFs). However, for great amount of data the

EMD is time consuming, while spline interpolation requires a lot of computational effort, and

over-sifting occurs. Thus, the need for modified versions to counter these drawbacks. FastEMD

was introduced in [14] where matrix-free moving least squares approximation is used. Raised

cosine filter proved to be faster than the EMD with lower sampling rate [15, 16], while good

performance was encountered for short signals and windowed version [17]. On the other hand,

blockwise EMD applications [18, 19, 20] are gaining much interest for real time applications.

In addition, new methods based on entropy indices were proposed in [21], along with Complete

Ensemble EMD (CEEMD) [22] where faults were detected based on up to 7 IMF functions. This

leaves other harmonic components out of the analysis which may represent other kinds of faults.

Thus the need to put together a fast method capable of guaranteeing all harmonic extraction.

Merging the analysis of two consecutive blocks is prone to discontinuities known as the ”end

effect”. Several applications for Sliding Window EMD (SWEMD) have been developed in the
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literature to reduce discontinuities [11, 23, 24]. This paper proposes a new on-line modified

SWEMD capable of separating the carrier wave of a signal from its added harmonics. It has

the aim to helping control strategies in better rejecting system disturbances based on a good

harmonic isolation or extraction.

On-line applications require speed and efficiency in signal analysis to cope with constantly

incoming data. The traditional EMD requires several sifting processes to complete full multi-

component isolation. Moreover, new sliding window techniques are using data buffering with

end effect reduction through extrapolation and mirroring. This method aims to separate the

carrier wave and signal frequency components while reducing the processing time. The method

takes the property of the traditional EMD in separating carrier wave and harmonics of a signal,

then uses it in Pass 1 with a limited number of sifting processes (up to 4-5 in the worst cases

with remarkable added noise, versus 14-15 sifting processes in the traditional case). Then in

Pass 2, inflection points of the derivative of the residue found in Pass 1 are tracked in order

to extract the low frequency wave of Pass 1 residue. This will ensure complete separation of

carrier and harmonic components of the signal. To ensure discontinuity elimination between

consecutive windows in the online application, a new end effect method is employed based

on the time index. The method guarantees computational cost reduction since less time is

required for window analysis, while preserving all signal characteristic for analysis. The method

allows control units detection of fault signatures as well as disturbance rejection in multiple

applications. Section 2 presents the traditional EMD method. Section 3 introduces the new

modified SWEMD along with its advantages in comparison with the traditional and other

SWEMDs applied in the literature. Different signal examples are analyzed and discussed in

order to highlight the purpose the proposed method. Section 4 applies the method for non-

stationary signals through an application for wind turbine angular velocity harmonic detection.

Section 5 discusses and concludes based on the material and results presented through this
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paper while introducing the future work and its aims.

2. Traditional EMD Technique and Algorithm

Consider a portion x(t) of a signal χ(t) extracted between t− and t+ where two consecutive

extrema (minima or maxima) are located. x(t) corresponds to an oscillation starting at a

minimum or maximum passing trough a maximum or a minimum and ending at a minimum or

maximum respectively. This represents the high frequency wave variations in x(t) and denoted

as imf(t). In addition, let r(t) represent the low frequency wave variations or local trend in

x(t). One can write χ(t) = imf(t)+r(t) for t ∈ [t−, t+]. r(t) is known as the residual, which can

be a first-order or slowly varying trend. The high frequency wave imf(t) satisfies the properties

of an Intrinsic Mode Function (IMF) proposed by Huang et al. [13]:

• The number of maxima and minima points must be equal or differ by one from the number

of zero-crossings.

• The signal must have a zero mean, in other words the amplitude between each consecutive

maxima and minima point must be symmetric.

The EMD aims to decompose the signal into a set of IMFs meeting the aforementioned

properties. It serves the purpose of separating the high frequency wave from the signal, while

making the separated oscillation modes symmetric. If imf1(t) is the first IMF of χ(t), then

imf1(t) represents the high frequency wave. This accomplished through the detection of local

maxima and minima points respectively. Once the extremas are found, an upper envelope con-

necting the maxima, and a lower envelope connecting the minima are obtained through a spline

interpolation between those points. The average of both upper and lower envelopes deduces the

non-constant mean. Subtracting the computed non-constant mean from the analyzed signal
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based gives the IMF imf1(t). Thus, the residue r1(t) is obtained based on Equation 1.

χ(t)− imf1(t) = r1(t) (1)

Start

r(t) = χ(t); i = 1

imfi(t) = r(t)

Spline interpolation of imfi(t)

maximas: χmax(t) and minimas: χmin(t)

m(t) =
χmax(t)+χmin(t)

2

imfi(t) = imfi(t)−m(t)

m(t) ' 0
False

r(t) = r(t)− imfi(t)
True

r(t) ' 0 i = i+ 1
False

End

True

Sifting Loop

IMF Decomposition Loop

Figure 1: Flowchart for EMD algorithm.

The EMD algorithm may be summarized as follows:

1. Detect all extremas in χ(t).

2. Use spline interpolation to connect all maxima points and form the upper envelope de-

noted as χmax(t).

3. Use spline interpolation to connect all mnima points and form the lower envelope denoted

as χmin(t).

4. Compute the average or mean denoted by m(t) such that m(t) = χmax(t)+χmin(t)
2

.

5. Find the IMF imf1(t) such that imf1(t) = χ(t)−m(t).

The above steps are called the sifting process.
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6. imf1(t) is considered the input for the next sifting process. Envelopes and m(t) of imf1(t)

are deduced and this value is subtracted from imf1(t) such that imf1(t) := imf1(t)−m(t).

The sifting process keeps iterating until the properties for the IMF are fulfilled.

7. Reduce the original signal χ(t) by the first mode such that r1(t) = χ(t)− IMF1(t).

8. Residue r1(t) is considered the input data for the second IMF. The process is repeated

until all IMFs are extracted such that ri(t) = ri−1(t)− imfi(t).

The algorithm ends when no further IMFs can be extracted, i.e the residual no longer

contains extrema points. One can conclude that the EMD dissects the signals into a set of

components with frequency characteristics in the descending order through a set of filter banks.

Finally the original signal χ(t) is decomposed such that

χ(t) = rn(t) +
n∑
i=1

imfi(t) (2)

where n is the number of modes. The flowchart for the EMD algorithm is found in Figure

1.

3. Modified on-line SWEMD.

3.1. Introduction

Traditional signal processing techniques have limited time-frequency resolution. The FFT

shows good time resolution in small sized-windows, while good frequency resolution is recorded

in big sized windows. In addition, the Wavelet Transform (WT) has a great computational

cost reduces its efficiency for real time applications. Since EMD methods rely on the time

domain signal representation, the frequency resolution issue is no longer a concern. Consider

the illustrative example for χ(t) = x1(t) + x2(t), where x1(t) = sin(10t) + sin(30t) and x2(t) =

sin(5t). The signal χ(t) and its corresponding EMD decomposition is found in Figure 2. One

can note that the algorithm stopped when no extremas are detected. The decomposition shows
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Figure 2: EMD decomposition of χ(t) = x1(t) + x2(t).

a decreasing frequency value component the closer the algorithm reaches the end. By adding

all IMF signals one can visualize the harmonic components of the original signals. However,

with the traditional EMD seven sifting iterations were required for full harmonics extraction

and in on-line applications for several data windows it would be time consuming. This is the

first drawback tackled by the proposed method.

Figure 3 is an illustrative example of an EMD application for carrier and high frequency

components separation in a signal. Some on-line applications are fixing the number of sifting

iterations in order to prevent over-sifting in some cases. However, such a constraint might

well leave some low frequency components un-extracted. Thus the need for an approach capa-

ble of applying a definitive number of sifting iterations while reducing time consumption and

guaranteeing full harmonic extraction.

3.2. Problems with on-line EMD applications.

All SWEMD techniques use buffers to accumulate a sufficient amount of data for analysis.

The same sifting process for the offline EMD is used. The same process is repeated as long as

data are being fed to the buffer. The hitch resides in guaranteeing that the following data block

and analysis pick up from where the first block left off through smooth merger. The challenges
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Figure 3: EMD methodology representation.

encountered can be summarized as follows:

• IMFs are not the same for different iterations for each data block. Thus choosing the

same number of sifting iterations is vital to guaranteeing continuous IMF connections

between consecutive data blocks analysis.

• Blockwise sifting process produces end effect which are unpleasant for real-time analysis.

Thus the need to eliminate them.

• When a definitive number of sifting iterations is set, some blocks will still contain low

frequency waves. This problem needs to be resolved if all harmonics are to be isolated

from the carrier wave.

Rilling et al. [20] determined four to ten sifting iterations as sufficient for meaningful

IMF extraction. Furthermore, fewer sifting iterations reduces over-sifting while preserving the

physical meaning in IMFs. Considering the end effect problem, it is known that the trend

function (subtracted at each iteration from the IMF candidate function) is computed through

extrema interpolation. However, extremas do not extend to the end of the data block, thus the

envelope is extrapolated at its ends. Most EMD methods introduce cubic splines for extrema

envelopes interpolation. In cubic splines each cubic polynomial is fitted between every pair of
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points being interpolated. In this case the solution depends on all set of data being interpolated.

Thus adding a single point, or several data points may change the entire curve, which becomes

undesirable for real-time applications [25].
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Figure 4: Hermite (top) versus Cubic (bottom) interpolation for three IMF extraction iterations.

Hermite spline were suggested in [26], which instead forcing the continuous characteristic

to the second derivative, the first derivative is fixed at each point [27]. Each spline is com-

puted using local information only, for each point at i is estimated through averaging gradients

between points i − 1 and i + 1. This indicates that only the last spline changes when points

are added to the data block, while end effects can be seen only at the end of the last spline.

Figure 4 shows that end effects are limited when using Hermite interpolation even for off-line

applications.

The last fix is on the level of eliminating the end effect. Rilling et. al [20] proposed

extrapolation through mirroring of the last extremas. This eliminates the end effects and

guarantees the smooth merging of consecutive data blocks. The modified version applied in

this paper uses an overlap of data between two consecutive blocks while trimming unneeded

excess. This guarantees a complete continuation of the consecutive data blocks. The trimming

is based on two properties: the time index and the number of extremas sufficient and necessary

to override and eliminate end effects.
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3.3. Modified SWEMD for harmonic isolation and extraction.

The modified SWEMD aims to separate the carrier wave from existing harmonics. The

fact that some signals need several sifting loops in order to extract all containing components,

while others even after specifying the number of sifting iterations still containing harmonic

components requires a new method.

In this paper, the proposed SWEMD uses the old EMD process for a first pass called Pass 1.

Pass 1 requires a limited number of sifting processes. For the simple example found in Figure

3, one sifting iteration was needed in comparison with seven for the traditional EMD method.

Then the second pass called Pass 2 derives the signal while applying a Hermite interpolation

in order to detect inflection points. Inflection points indicate zero crossings, thus by projecting

these zero crossings to the residue from Pass 1 one can compute the envelope thus extracting

all remaining low frequency waves with a major cut through in time consumption for algorithm

application. The advantages of the method can be summarized as follows:

• Instead of applying four to fifteen sifting processes (based on the complexity and mea-

surement noise existing in the signal), a limited number of sifting processes is required

for Pass 1.

• The extraction of low frequency harmonics is guaranteed through Pass 2. The time needed

for a whole data block analysis is guaranteed to be less than the time required using the

traditional EMD. Thus reducing time analysis for real-time applications.

The algorithm for the proposed method is summarized as follows (see Figure 5)

1. Buffer a set of data to form the data block.

2. Hermite spline interpolation for buffered χ(t).

3. Compute the mean

m1(t) = χmax(t)+χmin(t)
2

(3)
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Hermite spline for χ(t)

Find m1(t)

Compute imf1(t)

Compute r1(t)

Derive r1(t)

Hermite spline for
dr1(t)
dt

and ti extraction

Find m2(t)

Compute imf2(t)

Compute r2(t)

Save overlap interval and trim end effect

End

Pass 1

Pass 2

Figure 5: Flowchart for EMD harmonic isolation.

4. Find the IMF for Pass 1

imf1(t) = χ(t)−m1(t) (4)

5. Find the residue for Pass 1

r1(t) = χ(t)− imf1(t) (5)

6. Derive r1(t).

7. Hermite spline interpolation for extrema detection and envelope computation for dr1(t)
dt

.

8. Extract ti at which no end effect exists in dr1(t)
dt

interpolation.

9. Compute the mean m2(t) for r1(t) through

m2(t) =
r1max (t)+r1min (t)

2
(6)

10. Find the IMF for Pass 2

imf2(t) = r1(t)−m2(t) (7)
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11. Find the residue for Pass 2

r2(t) = r1(t)− imf2(t) (8)

12. Trim block signal at ti.

13. Save a data interval at the end of the block, with at least seven extremas for overlap with

the following data block for end effect trimming.

In order to guarantee envelope and signal continuation through consecutive blocks, seven

overlap extremas are required. In this case, trimming occurs at a ti where dr1(t)
dt

end effects can

be eliminated thus guaranteeing the elimination of those of the original signal.

3.4. The stationary case without end effect elimination.

An example where each data block contains 31400 sample is presented in Figure 6, while

only one sifting iteration and one IMF is extracted in Pass 1. One can clearly note based on

9) and 10) that all harmonics have been extracted while the carrier remains at zero.
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Figure 6: on-line SWEMD without elimination of the end effect.
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Each block requires between 1.5 milliseconds for analysis. However for the traditional EMD,

eight sifting processes are required with a Standard Deviation (SD) of 0.3 for complete compo-

nent separation while more time for analysis is required (2.3 milliseconds). In addition, such

end effects existing in the analysis cause discontinuities and unpleasant behavior even for sta-

tionary systems. In the following, the method for end effect elimination and data block merger

is presented.

3.5. The stationary case with end effect elimination.

Figure 7 shows an illustrative example of the method applied with end effect elimination.

For Data Block 1 only the resulting end effect at the end in the red rectangle is to be trimmed.

However, for all following blocks the overlap in the green box and the end effect in the red

box are to be eliminated. This is done through good extraction of time instances t ∈ [t1, ..., ti],

where i = 1, ..., n and n is the number of data blocks. In addition, the overlap guarantees that

the analysis of the following data block merges perfectly with the previous one.

Signal

Reconstructed IMF

t1 t2 t3

Data Block 1
End Effect

Data Block 2
End EffectOverlap

Data Block 3
Overlap

Figure 7: End effect elimination illustrative example in blockwise (windowed) EMD.

Using the end effect elimination illustration in Figure 7, one obtains the results shown

in Figure 8. It can be noted that for end effect to be eliminated one needs greater number of
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samples in order to guarantee both overlap and capture of ti. It is clear that all end effects have

been eliminated while perfect signal and envelope continuation are guaranteed. In addition, for

60000 samples in this case each block needs 4.5 milliseconds to be analyzed in the new method

but 6.3 milliseconds with the traditional EMD with the same SD. One can also note that the

end effect at the beginning of the first data block has not been eliminated. This is due to the

fact that no knowledge of previous extremas exists in this case.
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Figure 8: on-line SWEMD with elimination of the end effect.

In fact examining parts 2) and 6) in Figure 6, it is notable that the end effect for the

derivative interpolation of r1(t) is worse than that of the original block input. Thus considering

a ti at which the end effect of the derivative of the r1(t) would be eliminated will surely eliminate

those in the original signal. The overlap to be chosen must take into account a sample amount

greater than that of the interval in which the end effect exists.

However, this application is done for a stationary signal. To test the ability of this method

for non-stationary processes, a signal with changing frequency and amplitude will be applied

in the following section, while an application for wind turbine’s angular velocity during non-
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stationary operation is presented.

4. Modified SWEMD application for non-stationary processes.

4.1. Introduction.

In this section, the proposed method’s efficiency is tested for non-stationary signals. For

that purpose, the signal in Figure 9 is considered as a representation for speed change in wind

turbines while perturbation amplitude and frequency vary. One can note 5 different intervals

where the frequency components vary along with the amplitude and the offset.
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Figure 9: Non-stationary signal example.

The aforementioned method is applied in order to isolate the carrier wave from the har-

monics. The results are shown in Figure 10. imf1(t) shown in 3) is extracted through two

sifting processes. The residue in Pass 1 r1(t) still contained the low frequency wave component,

thus the need for Pass 2. After extracting the low frequency wave, the carrier is completely

separated from existing harmonics found in the sum of imf1(t) and imf2(t).

4.2. Harmonic extraction of turbine side angular velocity in wind turbines.

Wind profiles driving wind turbines are random non-stationary processes. They introduce

disturbances and harmonics which propagate along the drive train, through the gearbox, until

reaching the generator and eventually the turbine current and voltage output. The total wind

speed is the combination of the measured speed at the hub level along with the wind shear and
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Figure 10: Modified SWEMD applied to a non-stationary signal.

tower shadow. The following wind speed and aerodynamic torque formulation is considered

(see Figure 11) [28, 29]
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Figure 11: Aerodynamic torque produced by the wind profile.
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veq(t, θ) = veq0 + veqws + veqts (9)

where the wind speed measured at the hub level veq0 is expressed as

veq0 = Vh (10)

The wind shear speed component veqws expression is

veqws = Vh

[
α(α− 1)

8

(
R

H

)2

+
α(α− 1)(α− 2)

60

(
R

H

)3

cos33θb

]
(11)

while the speed due to tower shadow veqts is found to be

veqts =
Vh

3R2

3∑
b=1

[
a2

sin2θb
ln

(
R2sin2θb

x2
+ 1

)
− 2a2R2

R2sin2θb + x2

]
(12)

Thus the total aerodynamic Taero is found to be

Taero(t, θ) = ρAVhCp(λ0)

[
1

2

V 2
h

ωr
+
R

λ0

(veqws + veqts)

]

= T classicalaero + Twsaero + T tsaero

(13)

while Vh being the measured wind speed at hub level, α as the empirical wind shear exponent,

R being the turbine rotor radius, H is the hub height, a as the tower radius, x being the distance

of blade origin from the tower mid-line, ρ the air density, A as the area swept by the blades, Cp

is the power coefficient, λ0 being the tip speed ratio, ωr as the rotor speed, θb is the blade angle

position, T classicalaero being the classical torque produced by the turbines, Twsaero being the wind

shear torque component, and T tsaero the tower shadow torque component. Parameters are shown

in Table 1. Figure 11 shows the different aerodynamic torque components for changing wind

speed profile. One can note three types of harmonics introduced to the measured turbine side

angular velocity. Disturbances are linked to the wind shear, tower shadow and speed variations

respectively. The measured angular velocity is found in Figure 12.
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Parameter Value

α 0.3

R 56 m

H 90 m

a 8 m

x 3 m

ρ 1.25 kg/m3

Power 2.5 MW

Table 1: Parameters values.
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Figure 12: Turbine side angular velocity.

Control strategies will always tend to eliminate the harmonics introduced to the system.

The modified SWEMD will do the job in separating these harmonics from the carrier wave,

thus supporting control strategies in better analyzing containing frequency components. The

process bloc diagram is shown in Figure 13.

The modified SWEMD method is applied for the measured angular velocity signal. The

results are shown in Figure 14. One sifting process was sufficient for imf1(t) extraction. Residue

r1(t) still contained low frequency wave. Pass 2 extracted the remaining harmonics, while

residue r2(t) is harmonics-free. It is important to note that a small deviation from the signal

is encountered during sudden speed change specially at the derivative level of r1(t). However,

this deviation does not influence the end result which shows complete harmonic extraction and
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Figure 13: Bloc Diagram of the modified SWEMD harmonics extraction for angular velocity signal.

separation from carrier. The proposed method is successful in non-stationary applications.
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Figure 14: modified SWEMD applied for angular velocity harmonics extraction.

The last verification is applied through spectral analysis. The FFT is applied for both high

speed and low speed harmonics sections found in 9) of Figure 14. The results are shown in

Figure 15.

One can clearly note that all harmonics are preserved. In fact, apart from the carrier

physical quantity, all frequency and amplitude information are well extracted. The harmonics

seen in the figure are related the normal wind speed variations, in addition to the wind shear

and tower shadow components. Thus a full separation of all disturbances is observed.
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Figure 15: FFT comparison between the original signal and its extracted harmonics through EMD (High speed

section on top, Low speed section at the bottom).

This proves the effectiveness of the method in separating the carrier wave from the harmonic

components even for low frequency waves. In this case, the control strategy is capable of dealing

with disturbance rejection either for all harmonics or the added harmonic by a fault or other

exogenous factors. In addition, since all angular velocity variation have been omitted, the

control unit will now be faster in dealing with harmonic rejection.

4.3. Harmonic extraction for turbine side angular velocity with added measurement colored

noise.

In this section added measurement noise is considered. This test proves the effectiveness of

the proposed method when noise exists in the measurement. Several tests have been carried

out with different colored noise. Figure 16 shows the results in the presence of 40 dB Signal to

Noise Ratio (SNR) pink noise added to the measurement.

Part 1) in Figure 16 shows the first envelope interpolation in the first sifting process. In

fact, six sifting processes were required in this case to extract all high frequency waves with an

added Pass 2 were sufficient for complete carrier separation from harmonics as seen in parts

2) and 3). Compared to the traditional EMD, seventeen sifting processes were required to

21



Figure 16: Modified EMD for the turbine side angular velocity measurement with added pink noise.

extract all IMFs. The computation time is cut down by 2/3 in this case. Even with colored

added noise, the method guarantees complete separation between carrier and harmonic waves,

while all discontinuities are eliminated through the end effect method utilized. 5.8 seconds were

required for the 100000 sample window in the proposed method, while the traditional EMD

needed 14.3 seconds to complete IMF extraction.

A summary of computational time for different examples is shown in Table 2, computation

time is realized on PC: Intel(R) Core(TM) i5-6600 CPU @ 3.30 GHz, 64 bits; Ram: 8 GB . The

results show that the new modified EMD approach cuts down time consumption in computation

process. Fewer sifting processes are required while all harmonics have been extracted. This

is an advantage over the methods applied in [21, 22] where detecting faults is based on up

to seven IMFs only. The frequency signature extracted in this case is a reflection of any

system performance. Thus enabling the control strategy to reject disturbances, and detect
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Table 2: Process comparison for different applications for both modified and traditional EMD.

Modified EMD Traditional EMD

Sifting processes Time Sifting processes Time

Stationary Case 1 & 1 Pass 2 4.5 ms 7 6.3 ms

Non-stationary

case

2 & 1 Pass 2 0.28 s 12 0.63 s

Measured angu-

lar velocity

3 & 1 Pass 2 2.2 s 14 4.3 s

Angular velocity

with pink noise

6 & 1 Pass 2 5.8 s 17 14.3 s

fault signatures no matter how small their physical value was.

5. Conclusion

Traditional signal processing methods are falling behind modern system requirements re-

garding non-linearity, non-stationarity, robustness, efficiency, reliability, etc. Thus, the need

for new improved methods capable of extracting signal characteristics for better understanding

of system operation. This paper introduces a new modified SWEMD method aiming to reduce

processing time while being applied on-line. The method uses the characteristics of the tradi-

tional EMD in extracting IMFs, then applies an interpolation to the derivative of the residue

obtained in the first section of the algorithm. In addition, a new approach for end effect elimi-

nation is presented based on time indices and the number of extrema chosen for data overlap.

Results show efficiency and speed in real time analysis while removing end effects successfully

and merging different data blocks. In fact, the method uses in worst case scenario three sift-

ing iterations and one derivative interpolation to complete harmonic extraction. FFT analysis

proves complete frequency and amplitude information extraction from the original signal.
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The application for wind turbines shows the ability for applying this new modified SWEMD

on real systems. Furthermore, it can be used as control strategy assistance for disturbance

rejection of harmonic compensation. Future work includes the application of this method along

with an Active Disturbance Rejection Control (ADRC) strategy for harmonic rejection in wind

turbines. In addition, a factor needs to be added similar to the standard deviation in order

to find the sufficient necessary number of sifting processes applied in Pass 1, before applying

Pass2. Without the factor, one needs to fix the number of sifting processes before applying the

algorithm and this number changes in different applications.
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