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Abstract: To help researchers to evaluate uniform but not stationary (thus transient) thermal conditions, we 
describe, show the performances and provide a new simple tool, which can be used to predict the whole-body 
dynamic thermal sensation and thermal comfort. The tool comprises a thermo-physiological model able to 
predict the body core and mean skin temperatures under uniform and transient environmental conditions and 
a dynamic thermal perception model, which uses the simulated temperatures to predict thermal sensation and 
thermal comfort. The selected thermo-physiological model is an updated version of the classical Gagge’s two-
node model. For predicting the thermal sensation vote, we use an updated version of Fiala’s Dynamic Thermal 
Sensation (DTS) model. Finally, for modelling the last step of thermal perception, i.e. thermal comfort, we 
derive a new dynamic version of the well-known Fanger’s Predicted Percentage of Dissatisfied (PPD) index. We 
show that our novel models have better performances than the original ones. Furthermore, their simplicity 
and low computational cost are important advantages over more complex and computationally expensive 
multi-segment and multi-node thermo-physiological models. 
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1. Introduction 
The physical interaction between an occupant and a dynamic indoor environment can 

be modelled by mathematical models of human thermoregulation, which predict detailed 
body core and skin temperatures [1]. The predicted temperatures can then be used as 
inputs for thermal perception models, which are developed from regression analysis of 
experimental thermal sensation and/or thermal comfort votes and simulated or monitored 
physiological parameters [2]. 

Even though several multi-segment and multi-node thermo-physiological models have 
been developed in recent years (e.g. Tanabe [3], Fiala [4,5], the Berkeley Comfort Model [6] 
and ThermoSEM [7]), yet they have not been largely applied for the prediction of thermal 
sensation and thermal comfort in the built environment. These models simulate body core 
and skin temperatures for different regions of the human body under asymmetric 
environmental conditions. Their complexity (and the computational burden associated with 
their implementation) is of little utility in most building energy simulations, which only 
provide average environmental conditions for the simulated thermal zones. Moreover, the 
high level of insulation of new buildings leads to little asymmetry and rather homogenous 
temperature distributions. 

In practice, building modellers continue to stick to the traditional Fanger's PMV/PPD 
model, even for the evaluation of dynamic conditions characterized by rapid changes in 
either environmental or personal variables [8–15]. However, Fanger's model is derived from 
a steady-state heat balance equation and steady-state laboratory experiments [16] and is, 
therefore, only suited to predict thermal comfort under steady-state or slowly changing 



indoor conditions (temperature gradients less than 2 °C/h) [2]. Furthermore, the model is 
not able to predict thermal comfort under dynamic levels of activity. 

To help researchers to break away from the bad habit of using the PMV/PPD model 
when evaluating uniform but not stationary (thus transient) conditions, we describe, test 
and provide a new simple tool for the prediction of the whole-body dynamic thermal 
sensation and thermal comfort. The novel tool comprises two main elements: 

 a thermo-physiological model able to simulate the body core and mean skin 
temperatures under uniform conditions, 

 a dynamic thermal perception model which uses the simulated body core and mean 
skin temperatures to predict both thermal sensation and thermal comfort. 

The selected thermo-physiological model is an updated version of the classical Gagge’s 
two-node model, also known as Pierce’s two-node model [17]. For predicting the dynamic 
thermal sensation, we opt for an updated version of Fiala’s Dynamic Thermal Sensation 
(DTS) model [18]. Finally, for predicting the dynamic thermal comfort we derive a new 
model, which is able to calculate the Dynamic Percentage of Dissatisfied (DPD) from the 
dynamic thermal sensation, thus mimicking the structure of the classical Fanger’s PPD index. 
The original Gagge’s and Fiala’s models are reviewed in Section 2.1, 2.2 and 2.3. The 
derivation of the updated Gagge’s two-node model is illustrated in Section 4.1. The 
development of the two parts, i.e. thermal sensation and thermal comfort, of the novel 
dynamic thermal perception model is illustrated in Section 4.2 and 4.3, respectively. 

2. Literature 

2.1. Gagge’s two-node model 
In Gagge’s two-node model, the human body (i.e. the passive/controlled system of 

human thermoregulation) is simulated as two concentric thermal compartments: a core 
cylinder (simulating muscle, subcutaneous tissue and bone) surrounded by a thin skin outer 
layer. The model simulates the heat transfers between the two compartments and between 
the outer layer and the environment and the temperature within each compartment is 
assumed to be uniform. The active/controlling system (which simulates the regulatory 
responses of shivering, vasoconstriction, vasodilatation and sweating) is based on a simple 
linear, temperature-based control theory of human thermoregulation. 

The model was originally developed in 1971 [17,19] and has undergone many 
iterations and refinements, so that several versions are now available. The version of the 
model that was used in this work is mainly based on the BASIC and C++ code provided by 
Fountain and Huizenga [20–22] and has been re-coded in Python and validated against 
simulated data provided by Haslam [23], which uses a similar version of the model. 

Several researchers have tested the performances of Gagge’s model against 
experimental data [21,23,24] and have shown that: 

 the model's predictions are very accurate in neutral conditions, reasonable for warm 
and hot conditions and less accurate in the colder environments (for air 
temperatures less than 5°C), 

 the model is not able to accurately predict conditions of moderate to high exercise 
intensity (approximately 3.5 met to 8 met), especially during complex fluctuations, 
characterized by short work and rest cycles. 



For additional information on the performances of the model the reader is referred to 
the works of Haslam [23], Doherty & Arens [21] and Smith [24]. In this paper, a small 
validation of the model is carried out in Section 5.1. 

2.2. Fiala’s DTS model 
The literature offers three main models for predicting the thermal sensation in steady-

state and transient conditions from physiological states (inputs parameters are shown in 
parenthesis): 

 Fiala model (𝛥𝑇𝑐𝑜𝑟𝑒, 𝛥𝑇𝑠𝑘,𝑚𝑒𝑎𝑛, 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡
) [18], 

 Zhang model (𝛥𝑇𝑠𝑘,𝑚𝑒𝑎𝑛, 𝛥𝑇𝑠𝑘,𝑙𝑜𝑐𝑎𝑙, 
𝜕𝑇𝑠𝑘,𝑙𝑜𝑐𝑎𝑙

𝜕𝑡
) [25–27], 

 Takada model (𝛥𝑇𝑠𝑘,𝑚𝑒𝑎𝑛, 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡
) [28]. 

where 𝛥𝑇𝑐𝑜𝑟𝑒, 𝛥𝑇𝑠𝑘,𝑚𝑒𝑎𝑛, 𝛥𝑇𝑠𝑘,𝑙𝑜𝑐𝑎𝑙 are the differences between the body core, mean 

skin and local skin temperatures in the actual conditions and their values for thermo-neutral 

conditions (neutral points); 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡
 and 

𝜕𝑇𝑠𝑘,𝑙𝑜𝑐𝑎𝑙

𝜕𝑡
 are the rates of change (first derivatives 

with respect to time) of the mean and local skin temperatures, respectively. Between the 
three models we opted for Fiala’s DTS model, which has been shown to perform better than 
the other two for both steady-state and transient exposures [2] and which does not require 
local skin temperatures as inputs. 

Fiala’s DTS model was developed from regression analysis of selected experiments 
including 220 exposures to air temperatures ranging between 13°C and 48°C and activity 
levels between 1 met and 10 met [18]. The model is able to predict the whole-body thermal 
sensation on the seven-point ASHRAE scale and is composed of three main parts: 

 a first part, as a function of 𝛥𝑇𝑠𝑘,𝑚𝑒𝑎𝑛, to model the response of sedentary subjects 

under steady-state environmental conditions, 

 a second part, as a function of 𝛥𝑇𝑐𝑜𝑟𝑒 weighted by 𝛥𝑇𝑠𝑘,𝑚𝑒𝑎𝑛, accounting for effects 
associated with exercise and warm body core temperatures, 

 a third part, as a function of both positive and negative 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡
, dealing with the 

dynamic components of thermal sensation observed in transient thermal conditions. 

Fiala refers to the first and second parts as the static comfort model, while the third 
part represents the dynamic component of the human thermal sensation. The complete 
model has the following form: 

𝑫𝑻𝑺 = 𝟑 ∙ 𝒕𝒂𝒏𝒉 [𝒂 ∙ 𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏 + 𝒈 + (𝟎. 𝟏𝟏𝟒 ∙
𝝏𝑻𝒔𝒌,𝒎𝒆𝒂𝒏

𝝏𝒕

(−)

+ 𝟎. 𝟏𝟑𝟕 ∙ 𝒆–𝟎.𝟔𝟖𝟏𝒕 ∙
𝝏𝑻𝒔𝒌,𝒎𝒆𝒂𝒏

𝝏𝒕 𝒎𝒂𝒙

(+)

) ∙
𝟏

(𝟏 + 𝒈)
] 1 

where 𝑎 is 0.301°C-1 and 1.078°C-1 for 𝛥𝑇𝑠𝑘,𝑚𝑒𝑎𝑛 < 0 and 𝛥𝑇𝑠𝑘,𝑚𝑒𝑎𝑛 > 0, respectively. 
𝝏𝑻𝒔𝒌,𝒎𝒆𝒂𝒏

𝝏𝒕

(−)
 is equal to 0 for 

𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡
> 0 and 𝑔 is calculated from: 

𝒈 = 𝟕. 𝟗𝟒 ∙ 𝒆
(

−𝟎.𝟗𝟎𝟐
𝜟𝑻𝒄𝒐𝒓𝒆+𝟎.𝟒

+
𝟕.𝟔𝟏𝟐

𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏−𝟒
)
 2 

where 𝑔 = 0 for 𝛥𝑇𝑐𝑜𝑟𝑒 ≤ −0.4 𝐾 or 𝛥𝑇𝑠𝑘,𝑚𝑒𝑎𝑛 ≥ 4 𝐾. Thus, the effect of 𝑔 on thermal 
sensation vanishes for either cold core temperatures or too warm skin temperatures. 

The term 0.114 ∙  
𝝏𝑻𝒔𝒌,𝒎𝒆𝒂𝒏

𝝏𝒕

(−)
 of the dynamic component accounts for overshoots (i.e. 

abrupt decreases) of thermal sensation caused by transient cooling of the skin. The term 

0.137 ∙  𝒆–𝟎.𝟔𝟖𝟏𝒕 ∙
𝝏𝑻𝒔𝒌,𝒎𝒆𝒂𝒏

𝝏𝒕 𝒎𝒂𝒙

(+)
represents the time-weighted maximum positive rate of 



change of the skin temperature and accounts for abrupt increases of thermal sensation 
caused by transient warming of the skin. This dynamic term is based on Fiala’s assumption 
that, during skin warming, the thermal sensation is governed by the most intense rate of 
change of skin temperature, weighted by a function of the time elapsed since its 
occurrence. Cooling and warming overshoot responses appear under both cold and warm 
skin conditions and have been first observed by Gagge during temperature step-change 
variations [29]. During exercising conditions, the thermal sensation is less sensitive to 
transient changes in skin temperatures, therefore the dynamic component is weighted by 

1

(1+g)
, where g is the term responsible for changes in thermal sensation due to exercise. 

2.3. Fiala’s active system model 
Fiala’s empirical control equations for sweating, shivering, and cutaneous vasomotion 

(i.e. constriction and dilatation) are derived from statistical analysis of 27 different 
experiments covering a range of air temperatures between 5°C and 50°C, and exercise 
intensities between 0.8 met and 10 met [4]. In Fiala’s empirical control model, for 
conditions of internal hot stress, the sweating and vasodilatation responses are described 

using the warm temperature error signal from the body core 𝛥𝑇𝑐𝑜𝑟𝑒
(+)

. While, for conditions 
characterized by not significant changes in the body core temperature, sweating and 

vasodilatation are governed by the warm skin temperature error signal 𝛥𝑇𝑠𝑘,𝑚𝑒𝑎𝑛
(+)

. The cold 

skin temperature error signal 𝛥𝑇𝑠𝑘,𝑚𝑒𝑎𝑛
(−)

 is the governing variable for the responses against 

cold, i.e. vasoconstriction and shivering. The effect of the cold body core temperature error 

signal 𝛥𝑇𝑐𝑜𝑟𝑒
(−)

 on vasoconstriction is negligible, while it is more substantial for shivering. It is 

important to highlight that cold skin temperature error signals 𝛥𝑇𝑠𝑘,𝑚𝑒𝑎𝑛
(−)

 have an inhibiting 

effect on sweating and warm body core temperature error signals 𝛥𝑇𝑐𝑜𝑟𝑒
(+)

 have an inhibitory 
effect on shivering. Furthermore, sweating and shivering can be respectively inhibited and 

stimulated by negative rates of change of the mean skin temperature 
∂Tsk,mean

∂t

(−)

. When 

sweating is elicited due to 𝛥𝑇𝑐𝑜𝑟𝑒
(+)

 (e.g. when working in a cold environment) shivering is set 
to zero. 

Fiala’s control equation for the cutaneous vasodilatation in W/°C is given by: 

𝑫𝒍 = 𝟏𝟔 ∙ [𝒕𝒂𝒏𝒉 (𝟏. 𝟗𝟐 ∙  𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏
(+)

− 𝟐. 𝟓𝟑) + 𝟏]  ∙ 𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏
(+)

 

+ 𝟑𝟎 ∙ [𝒕𝒂𝒏𝒉 (𝟑. 𝟓𝟏 ∙ 𝜟𝑻𝒄𝒐𝒓𝒆
(+)

− 𝟏. 𝟒𝟖) +𝟏] ∙  𝜟𝑻𝒄𝒐𝒓𝒆
(+)

 
3 

Fiala’s control equation for the sweating rate in g/min is given by: 

𝑺𝒘 = [𝟎. 𝟔𝟓 ∙ 𝒕𝒂𝒏𝒉 (𝟎. 𝟖𝟐 ∙ 𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏
(+,−)

− 𝟎. 𝟒𝟕) + 𝟏. 𝟏𝟓] ∙ 𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏
(+,−)

+ [𝟓. 𝟔 ∙ 𝒕𝒂𝒏𝒉 (𝟑. 𝟏𝟒 ∙ 𝜟𝑻𝒄𝒐𝒓𝒆
(+)

− 𝟏. 𝟖𝟑) + 𝟔. 𝟒𝟏] ∙ 𝜟𝑻𝒄𝒐𝒓𝒆
(+)

 
4 

Fiala’s control equation for the cutaneous vasoconstriction, dimensionless, is given by: 

𝑪𝒔 = 𝟑𝟓 ∙ [𝒕𝒂𝒏𝒉 (𝟎. 𝟐𝟗 ∙ 𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏
(−)

+ 𝟏. 𝟏𝟏) −𝟏]  ∙ 𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏
(−)

−  𝟕. 𝟕 ∙ 𝜟𝑻𝒄𝒐𝒓𝒆
(−)

  

+ 𝟑 ∙  𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏
(−)

∙
𝝏𝑻𝒔𝒌,𝒎𝒆𝒂𝒏

𝝏𝒕

(−)

 
5 

Fiala’s control equation for the shivering response in W is given by: 

𝑺𝒉 = 𝟏𝟎 ∙ [𝒕𝒂𝒏𝒉 (𝟎. 𝟓𝟏 ∙ 𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏
(−)

+ 𝟒. 𝟏𝟗) −𝟏] ∙ 𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏
(−)

−   𝟐𝟕. 𝟓 ∙ 𝜟𝑻𝒄𝒐𝒓𝒆
(−,+)

 −  𝟐𝟖. 𝟐  

+ 𝟏. 𝟗 ∙ 𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏
(−)

∙
𝝏𝑻𝒔𝒌,𝒎𝒆𝒂𝒏

𝝏𝒕

(−)
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3. Methods 

3.1. Used datasets 
Dataset 0 was assembled to validate the body core and skin temperatures predicted 

by the updated Gagge’s two-node model and does not include any thermal sensation and/or 
thermal comfort vote, which are instead part of the other datasets described below. It 
includes data coming from 5 different experiments carried out by different research teams 
[30–33]. In the first experiment (Condition 0-1) 3 subjects were exposed to warm step-
change exposures from 28.5°C to 37.5°C and back to 28.5°C [34]. In the second experiment 
(Condition 0-2) 3 subjects were exposed to cold step-change exposures from 29°C to 22°C 
and back to 29°C [30]. In the third experiment (Condition 0-3) 3 subjects were exposed to an 
air temperature of 12°C for 90 minutes followed by a sudden change to 28°C [31]. In the 
fourth experiment (Condition 0-4) 8 subjects were exposed to an air temperature of -10°C 
for 180 minutes followed by a sudden change to 21.7°C and the metabolic rate was 
alternately varied between 1.2 and 3 met [32]. Finally, in the fifth experiment (Condition 0-
5) 11 subjects were exposed to step-changes in metabolic rates from 2.2 met to 3.5 met and 
finally to 1 met [33]. 

Table 1. Details of the experimental conditions included in Dataset 0. The data are used to validate the 
updated Gagge’s two-node model. 

 𝐓𝐚 (°C) 𝐓𝐫 (°C) 𝐑𝐇 (%) 𝐕 (m/s) 𝐜𝐥𝐨 𝐦𝐞𝐭 

Condition 0-1 [34] 28.5-37.5-28.5 28.5-37.5-28.5 40-33-41 0.1 0.1 1 

Condition 0-2 [30] 29-22-29 29-22-29 44-39-41 0.1 0.1 1 

Condition 0-3 [31] 12-28 12-28 45 0.2 0.1 1 

Condition 0-4 [32] -10-21.7 -10-21.7 81-59 0.15 1.1 1.2-3 

Condition 0-5 [33] 30 30 30 0.2 0.1 2.2-3.5-1 

Dataset I is used to validate the updated Fiala’s DTS model and is made of 
experimental data collected at Kansas State University [35]. This is one of the very first 
laboratory experiment investigating cyclical temperature fluctuations. As part of the 
experiment, 12 students were exposed to 2 different cyclical temperature fluctuations, with 
each variation having an overall duration of 3 hours (Condition I-1 and I-2 in Figure 4). The 
study was conducted in summer and was addressing cooling and warming temperature 
transients in warm conditions. Thermal sensation was monitored every 7.5 minutes. 

Table 2. Details of the experimental conditions included in Dataset I. The data are used to validate the 
updated Fiala’s DTS model. 

 

𝛛𝐓𝐚

𝛛𝐭 𝐦𝐞𝐚𝐧
 (°C/h) 𝐓𝐚𝐦𝐞𝐚𝐧

 (°C) 𝐓𝐫 (°C) 𝐑𝐇 (%) 𝐕 (m/s) 𝐜𝐥𝐨 𝐦𝐞𝐭 

Condition I-1 [35] ±10.9 27 25.6 45 0.14 0.7 1 

Condition I-2 [35] ±5 27.4 25.6 45 0.14 0.7 1 

Dataset II is used to derive the updated Fiala’s DTS and Fanger’s DPD models and 
consists of experimental data collected at the University of Sydney [36]. Among the 
literature of thermal comfort studies investigating cyclical temperature variations, this is the 
laboratory experiment employing the greatest number of participants exposed to the 
highest rates of temperature change (up to 30°C/h). As part of the experiment, 56 students 
were exposed to 6 different cyclical temperature fluctuations (Conditions II-2 to II-7 in 
Figure 5), with each variation having an overall duration of 2 hours. The study was 
conducted in summer and was addressing cooling and warming temperature transients in 
warm conditions. Thermal sensation and thermal acceptability were monitored every 5 
minutes. 



Table 3. Details of the experimental conditions included in Dataset II. The data are used to derive the 
updated Fiala’s DTS and Fanger’s DPD models. 

 
𝛛𝐓𝐚

𝛛𝐭 𝐦𝐞𝐚𝐧
 (°C/h) 

𝛛𝐓𝐫

𝛛𝐭 𝐦𝐞𝐚𝐧
 (°C/h) 𝐑𝐇 (%) 𝐕 (m/s) 𝐜𝐥𝐨 𝐦𝐞𝐭 

Condition II-2 [36] ±8.8 ±8.8 72 to 86 up to 0.12 0.5 1 

Condition II-3 [36] ±13.4 ±13.4 65 to 94 up to 0.12 0.5 1 

Condition II-4 [36] ±10.2 ±10.2 70 to 94 up to 0.12 0.5 1 

Condition II-5 [36] ±10.3 ±10.3 68 to 82 up to 0.12 0.5 1 

Condition II-6 [36] ±10.7 ±10.7 66 to 86 up to 0.12 0.5 1 

Condition II-7 [36] ±11.3 ±11.3 64 to 98 up to 0.12 0.5 1 

Dataset III is used to derive the updated Fiala’s DTS model and includes experimental 
data collected at Chongqing University [37,38]. This is one of the most recent laboratory 
experiment investigating step-change variations, both cool-neutral-cool and warm-neutral-
warm transients. As part of the experiment, 12 students were exposed to 3 different cool-
neutral-cool variations (Condition III-1: 12-22-12°C, Condition III-2: 15-22-15°C and 
Condition III-3: 17-22-17°C) in winter and 3 different warm-neutral-warm variations 
(Condition III-4: 32-25-32°C, Condition III-5: 30-25-30°C and Condition III-6: 28-25-28°C) in 
summer. Each experiment lasted for 2 hours. Following the step-change transition, thermal 
sensation and thermal comfort were monitored every 2 minutes. 

Table 4. Details of the experimental conditions included in Dataset III. The data are used to derive the 
updated Fiala’s DTS model. 

 𝐓𝐚 (°C) 𝐓𝐫 (°C) 𝐑𝐇 (%) 𝐕 (m/s) 𝐜𝐥𝐨 𝐦𝐞𝐭 

Condition III-1 [37] 12-22-12 12-22-12 57-44-57 0.07-0.01-0.07 1.17 1 

Condition III-2 [37] 15-22-15 15-22-15 58-51-58 0.03-0-0.03 1.17 1 

Condition III-3 [37] 17-22-17 17-22-17 54-49-54 0.06-0-0.06 1.17 1 

Condition III-4 [38] 32-25-32 32-25-32 59-58-59 0.1 0.5 1 

Condition III-5 [38] 30-25-30 30-25-30 59-58-59 0.1 0.5 1 

Condition III-6 [38] 28-25-28 28-25-28 61-61-61 0.1 0.5 1 

Dataset IV was specifically assembled to validate the updated Fiala’s DTS model under 
dynamic conditions characterized by significant changes in metabolic rates. The dataset 
includes data coming from 4 different experiments carried out by different research teams 
[39–42]. In the first experiment (Condition IV-1), 11 subjects alternatively rested for 15 
minutes (1 met) and walked slowly (1.5 met). At the same time, they were exposed to 
cyclical temperature variations at rates of ±18°C/h over a period of 2 hours and their 
thermal sensation was recorded every 5 minutes [39]. In the second experiment (Condition 
IV-2), the thermal sensation of 10 subjects was recorded during a work/rest sequence at an 
air temperature of 10°C. For the first hour of the experiment the subjects exercised on a 
bicycle (2.6 met) followed by an hour of recovery during which the subjects seated quietly (1 
met) [40]. In the third experiment (Condition IV-3), 6 students pedalled on a bicycle (3.6 
met) for 90 minutes after resting for 30 minutes (1 met) at an air temperature of 24°C. Their 
thermal sensation was surveyed each 15 minutes [41]. In the third and fourth experiments 
(Conditions IV-4 and IV-5), 20 students alternately seated (1 met) and walked at 0.9 m/s (2.0 
met) and 1.2 m/s (2.6 met) for 30 minutes at two different air temperatures of 20 and 25°C. 
Their thermal sensation was recorded each 1 to 5 minutes [42]. 

 
 
 



Table 5. Details of the experimental conditions included in Dataset IV. The data are used to validate the 
updated Fiala’s DTS model. 

 𝐓𝐚 (°C) 𝐓𝐫 (°C) 𝐑𝐇 (%) 𝐕 (m/s) 𝐜𝐥𝐨 𝐦𝐞𝐭 

Condition IV-1 [39] 
𝛛𝐓𝐚

𝛛𝐭 𝐦𝐞𝐚𝐧
=±18°C/h 

𝛛𝐓𝐚

𝛛𝐭 𝐦𝐞𝐚𝐧
=±18°C/h 50 0.25 0.7 1-1.5 

Condition IV-2 [40] 10 10 52 0.1 1.2 2.6-1 

Condition IV-3 [41] 24 24 45 0.15 0.6 3.6-1 

Condition IV-4 [42] 20 20 53 0.1 0.85 1-2-2.6 

Condition IV-5 [42] 25 25 53 0.1 0.85 1-2-2.6 

3.2. Performance metric 
The root-mean-square-error (RMSE) is used to measure the predictive accuracy of the 

updated models against the original ones. 

𝑹𝑴𝑺𝑬 =  √
∑(𝑶𝑽 − 𝑷𝑽)𝟐

𝒏
 7 

where 𝑂𝑉 is the observed value, 𝑃𝑉 is the predicted value and 𝑛 is the number of data 
points. 

4. Updated models 

4.1. Gagge’s two-node model 
From the review of Section 2.1 we can conclude that, despite its simple representation 

of the human body, Gagge’s two-node model is mildly accurate to be used for practical 
applications in the built environment where environmental conditions are usually near the 
neutrality and activity levels are mostly lower than 3.5 met. However, activities in the built 
environments can be sometimes characterized by abrupt changes in metabolic rates, 
especially in residential settings where occupants engage in activities other than sedentary 
ones. Thus, we have decided to extent the predictive capabilities of Gagge’s two-node 
model by substituting its simple linear, temperature-based active system model with Fiala’s 
non-linear, temperature-based active system model, which has been reviewed in Section 
2.3. 

4.2. Fiala’s DTS model 
Once having determined the static comfort part, Fiala derived the dynamic component 

of human thermal sensation by linear regression using the following rearranged equation: 

𝒀 = [𝒕𝒂𝒏𝒉−𝟏 (
𝑫𝑻𝑺

𝟑
) −  𝒂 ∙ 𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏 − 𝒈] ∙ (𝟏 + 𝒈) = 𝒃 ∙

𝝏𝑻𝒔𝒌,𝒎𝒆𝒂𝒏

𝝏𝒕
 8 

The linear regression was run using a limited set of experimental data coming from 
only two exposures to sudden step-changes in air temperature: 28-18-28°C and 28-48-28°C 
[29]. Additional experimental data from cyclical temperature variations were then used to 
validate the model for transient conditions. In Figure 4, observed thermal sensation votes 
(TSV) are compared with Fiala’s predicted DTS values for two exposures to cyclical 
temperature fluctuations [35]. Fiala’s predictions (in cyan in Figure 4) use the updated 
Gagge’s 2-node model coupled with Fiala’s DTS model. The predicted DTS values agree 

reasonably well for the slower sinusoidal changes of air temperature (
𝜕𝑇𝑎

𝜕𝑡
= 5 𝐾/ℎ for 

Condition I-2 in Figure 4) but the model is not able to follow faster fluctuations of air 

temperature (
𝜕𝑇𝑎

𝜕𝑡
= 10.9 𝐾/ℎ for Condition I-1 in Figure 4). Given these limitations, we have 

decided to update Fiala’s 𝑏 coefficient by using additional experimental data coming from 
both the cyclical conditions of Dataset II [36] and the step-change conditions of Dataset III 



[37,38], which have been illustrated in Section 3.1. The linear regression procedure to 
obtain 𝑏 is the same as the one used by Fiala but the body core and skin temperatures are 
simulated using the updated Gagge’s 2-node model described in Section 4.1. 

By looking at the relationship between 𝑌 and 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡
 in Figure 1 we can see that the 

dynamic component of thermal sensation strongly depends on the rate of change of the 

skin temperature, however it does not grow indefinitely for high values of 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡
; but 

rather reaches a positive and negative asymptote. Thus, we model this asymptotic 
behaviour using the classical hyperbolic tangent and, thus, we apply regression analysis to 

the linearized equation 𝑌 = 𝑏 ∙ 𝑡𝑎𝑛ℎ (
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡
) instead of the form 𝑌 = 𝑏 ∙

𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡
 used in 

Equation 8. The resulting linear model for cooling gradients has a coefficient of 

determination R2 equal to 0.728, hence our predictor 𝑡𝑎𝑛ℎ (
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡
) explains about 73% 

of the variability of our dependent variable Y. The 𝐹 − 𝑟𝑎𝑡𝑖𝑜 is equal to 369.5 and the p-
value associated with the model as a whole is very small, 𝑝 < 7.56𝑒−41, which means that 
the regression model is a good fit of the data. The resulting linear model for warming 
gradients has a coefficient of determination R2 equal to 0.552, an 𝐹 − 𝑟𝑎𝑡𝑖𝑜 equal to 167.3 

and a small p-value associated with the model as a whole, 𝑝 < 1.90𝑒−25. We have checked 
that the key assumptions of linear regression (normality, homoscedasticity and no 
autocorrelation of the residual errors) are met. The resulting updated DTS model has the 
form: 

𝑫𝑻𝑺 = 𝟑 ∙  𝒕𝒂𝒏𝒉 [𝒂 ∙ 𝜟𝑻𝒔𝒌,𝒎𝒆𝒂𝒏 + 𝒈 + [𝒃 ∙ 𝒕𝒂𝒏𝒉 (
𝝏𝑻𝒔𝒌,𝒎𝒆𝒂𝒏

𝝏𝒕
)] ∙

𝟏

(𝟏 + 𝒈)
] 9 

where the coefficient b is equal to 0.3412 for cooling gradients 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡

(−)

 and 0.2755 for 

warming gradients 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡

(+)

. 

 

Figure 1. The term Y as a function of 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡
. Observed data are from Dataset II [36] and Dataset III 

[37,38]. 

4.3. DPD model 
Fanger’s well-known non-linear relationship between 𝑃𝑀𝑉 and 𝑃𝑃𝐷 is derived from 

steady-state laboratory experiments involving 1300 subjects and is given by: 

𝑷𝑷𝑫 =  𝟏 − 𝟎. 𝟗𝟓 ∙ 𝒆(−𝟎.𝟎𝟑𝟑𝟓𝟑∙𝑷𝑴𝑽𝟒−𝟎.𝟐𝟏𝟕𝟗∙𝑷𝑴𝑽𝟐) 10 



We derive a new dynamic version of Fanger’s static PPD index by using the new 
Equations Erreur ! Source du renvoi introuvable.. The reason behind this modelling 
approach is twofold: the parameter 𝑎 accounts for the fact that the dynamic thermal 
perception horizontally shifts subjects’ neutral conditions (at which maximum comfort is 
felt) towards warm thermal sensations during warming transients and cold thermal 
sensations during cooling transients. This is due to the warming and cooling overshoots 
perceived during warming and cooling transients respectively. At the same time, a vertical 
thermal comfort shift expressed by the parameter 𝑏 accounts for the alliesthesial effect: in 
warm conditions cooling transients elicit pleasure and, thus, increased satisfaction, while 
warming transients elicit displeasure and, thus, decreased satisfaction. The opposite is true 
for cold conditions. For the literature on the phenomenon of thermal alliesthesia the reader 
is referred to the works of Cabanac [43], Attia [44], Zhang [25–27], Parkinson [45] and Vellei 
& Le Dréau [46]. 

The data used to derive the new dynamic 𝑃𝑃𝐷 relation comes from the warm 
conditions of Dataset II since too few data of Dataset II is related to cold conditions [36]. In 
Dataset II, the observed percentage of dissatisfied subjects, observed 𝑃𝐷, is interpreted 
from a binary thermal acceptability scale and is defined as the ratio of thermal 
unacceptability votes to total votes. Fanger’s PPD index is derived using a different 
definition for the percentage of dissatisfied subjects, which is the percentage of people 
voting above warm or below cool (≥2 or ≤-2) on the 7-point ASHRAE thermal sensation 
scale. This method of derivation of 𝑃𝑃𝐷 is suitable under steady-state conditions. However, 
under dynamic conditions, warm and cold thermal sensations can be associated with 
satisfaction/pleasure if positive alliesthesia is elicited, hence Fanger’s derivation of the 𝑃𝑃𝐷 
index is suitable to predict thermal comfort only under steady-state conditions. 

To obtain the unknown parameters 𝑎 and 𝑏 of Equation 11 we use the Nelder-Mead 
Algorithm (as implemented in the python function scipy.optimize.minimize) to minimize the 
𝑅𝑀𝑆𝐸 for both cooling and warming transients under warm conditions. The resulting 𝑎 and 
𝑏 parameters for cooling gradients are equal to −0.2151 and −0.0251, while for the 
warming gradients are equal to −0.5424 and −0.0679. These coefficients are valid for 
warm exposures since they are both derived from the warm conditions of Dataset II. In cold 
conditions, it is assumed that cooling and warming overshoots have the same magnitude 
than in warm conditions. Thus, the coefficient 𝑎 is the same as derived above. Based on the 
alliesthesial effect which states that warming gradients are pleasurable in cold conditions 
but unpleasant in warm conditions and, on the contrary, cooling gradients are pleasurable in 
warm conditions but unpleasant in cold conditions, it is assumed that the coefficient 𝑏 for 
cold conditions has the opposite sign than the coefficient derived above for warm 
conditions. 

𝑫𝑷𝑫 = 𝟏 − 𝟎. 𝟗𝟓 ∙ 𝒆
(−𝟎.𝟎𝟑𝟑𝟓𝟑 ∙(𝑻𝑺𝑽+𝒂 ∙𝒕𝒂𝒏𝒉[

𝝏𝑻𝒔𝒌,𝒎𝒆𝒂𝒏

𝝏𝒕
])

𝟒

−𝟎.𝟐𝟏𝟕𝟗 ∙(𝑻𝑺𝑽+𝒂 ∙𝒕𝒂𝒏𝒉[
𝝏𝑻𝒔𝒌,𝒎𝒆𝒂𝒏

𝝏𝒕
])

𝟐

)
+ 𝒃 ∙ 𝒕𝒂𝒏𝒉 [

𝝏𝑻𝒔𝒌,𝒎𝒆𝒂𝒏

𝝏𝒕
] 11 

where: 

 in warm and cold conditions, the coefficient 𝑎 is equal to −0.2151 for cooling 

gradients 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡

(−)

 and −0.5424 for warming gradients 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡

(+)

, 

 in warm conditions, the coefficient b is equal to −0.0251 for cooling gradients 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡

(−)

 and −0.0679 for warming gradients 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡

(+)

, while in cold conditions 



the opposite is true, the coefficient b is equal to +0.0251 for cooling gradients 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡

(−)

 and +0.0679 for warming gradients 
𝜕𝑇𝑠𝑘,𝑚𝑒𝑎𝑛

𝜕𝑡

(+)

. 

The novel DPD model is plotted in Figure 2 for warm conditions (left) and cold conditions 
(right). 

  

Figure 2. Updated Fanger’s PPD relation for warm conditions (left) and cold conditions (right). The 
observed data comes from Dataset II [36]. 

5. Results 

5.1. Skin and body core temperatures 
In this Section, we show the performances in terms of RMSE of the updated Gagge’s 

two-node model against the original ones for predicting body core and mean skin 
temperatures. From Figure 3 we can see the significant contribution of Fiala’s active system 
in improving the prediction of the body core temperatures. However, there is not such 
improvement for the mean skin temperatures, except for the very cold exposure of 
condition 0-4. 

  

Figure 3. RMSE of the updated Gagge’s two-node model against the original one for the different 
experimental conditions of Dataset 0. 

5.2. Thermal sensation votes 
In this Section, we show the performances in terms of RMSE of the updated Fiala’s 

DTS model against the original one. Fanger’s PMV model is also included for comparison. 

Sedentary activity level 
From Figure 6 we can see that for the cyclical temperature variations of Dataset I and 

II and the step-change conditions of Dataset III, the updated Fiala’s DTS plus the Gagge’s 
two-node model give the best results, generally performing better than Fanger’s PMV 
model, with the difference more accentuated for the more dynamic conditions. 



  

Figure 4. Air temperature (𝑇𝑎, left) and thermal sensation (𝑇𝑆𝑉, right) for the 2 cyclical temperature 
variations (Conditions 1 and 2) of Dataset I [35]. Observed data are shown in green. 

  

Figure 5. Operative temperature (𝑇𝑜, left) and thermal sensation (𝑇𝑆𝑉, right) for the 6 cyclical 
temperature variations (Conditions 2-7) of Dataset II [36]. Observed data are shown in green. 



 

Figure 6. RMSE on TSV of the different tested models for the different experimental conditions of 
Dataset I (cyclical conditions), II (cyclical conditions) and III (step-change conditions). 

Transient work 
From Figure 7 we can see that the updated Gagge’s two-node model gives better 

results than the original one in the majority of the studied conditions, showing how 
determinant is the role of the Fiala’s active system for conditions of transient work. Gagge’s 
two-node model also performs better than Fanger’s PMV model. We can further see that 
the predictions of Fiala’s updated DTS model are similar than those of the original one. In 
fact, during transient work the dynamic thermal sensation is dominated by the body core 
temperature rather than by the mean skin temperature. Finally, by comparing Figure 6 and 
Figure 7, we can observe that the performances during transient work are generally worse 
than during sedentary conditions. 

 

Figure 7. RMSE on TSV of the different tested models for the different experimental conditions of 
Dataset IV. 



5.3. Percentage of Dissatisfied Occupants 
In this Section, we show the performances in terms of RMSE of the updated Fanger’s 

PPD (named DPD) against the original one. From Figure 8 we can see that the updated 
model is particularly important for improving the prediction during the most dynamic 
cyclical conditions II-3 and II-7 of Database II. 

 

Figure 8. RMSE on PPD of the different tested models for the different experimental conditions of 
Dataset II. 

6. Conclusions 
In this paper, we describe, evaluate and provide a new simple tool for predicting 

dynamic thermal comfort under uniform conditions. This tool is based on previous well-
known and esteemed works: Gagge’s 2-node model, Fiala’s DTS model and Fanger’s PPD 
model, which we have updated using recent knowledge and new empirical data. Gagge’s 2-
node model has been updated using Fiala’s empirical control equations for sweating, 
shivering, and cutaneous vasomotion. The dynamic component of Fiala’s DTS model has 
been updated using new data from both cyclical and step-change thermal conditions. 
Finally, we have used a new framework and new data from cyclical thermal conditions to 
update the form of the traditional Fanger’s PPD model into a new dynamic index. We show 
that our updated models have better performances than the original ones and also 
outperform Fanger’s model, especially for very dynamic conditions far from the neutrality. 
The simplicity and low computational cost of the proposed tool are important advantages 
over more-complex and more computationally expensive multi-segment and multi-node 
thermo-physiological models. 
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