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Abstract 9 
Demand Response (DR)-activated smart thermostats can be used to exploit the flexibility of 10 
residential heating and/or cooling systems. However, the acceptance/rejection of DR events 11 
depends on how occupants interact with their thermostats during the activated setpoint 12 
modulations. This interaction is mainly driven by their thermal comfort needs. Thus, 13 
understanding and modelling occupants’ comfort-driven interactions with thermostats is 14 
crucial for the design, assessment, and control of DR strategies. In this paper, we describe, 15 
calibrate, and show the in-use potentialities of a novel framework which is able to model 16 
occupants’ interactions with thermostats in residential buildings in winter. The framework 17 
includes a stochastic agent-based model of thermostat adjustments, whose dynamic 18 
thermal discomfort predictions are based on a two-node thermo-physiological model 19 
coupled with a dynamic thermal perception model. This represents a novelty with respect to 20 
the most often used static PMV/PPD model. Furthermore, the agent-based model is built on 21 
an activity and presence model and, therefore, is able to account for the diversity of the 22 
activities carried out by the occupants. User interaction data from about 9,000 connected 23 
Canadian thermostats included in the Donate Your Data (DYD) dataset are used to calibrate 24 
and establish the empirical foundation of the thermostat interaction model. Finally, we 25 
simulate typical DR-activated setpoint modulations in two residential buildings 26 
characterized by different levels of insulation and we use the framework to predict 27 
occupants’ override rates as a function of the indoor temperature and the time since the 28 
start of the DR event. The derived relationship can be directly used to inform the design and 29 
control of setpoint modulations in residential buildings. 30 
 31 
Keywords: Occupant Activity, Thermostat Adjustment/Override, Dynamic Thermal Comfort 32 
(Gagge + Fiala), Demand Response, Heating Energy Use 33 

1. Introduction 34 

1.1.  Context 35 
Demand response (DR) can modify consumption patterns in response to signals and, 36 
therefore, play a key role in enhancing the resilience of the future electricity grid. As the 37 
future peak electricity loads will be mainly driven by thermal comfort needs, of which 38 
heating mostly occurring at times when solar power is no longer available, a widespread 39 
implementation of DR-activated smart thermostats could represent an inexpensive and 40 
efficient solution for shifting thermal loads towards off-peak hours. Developments in low-41 
cost power electronics, information and communication technologies and technical 42 
infrastructures, e.g. smart meters, are favouring the uptake of DR across small commercial 43 
and residential groups [1]. Altogether, this makes the use of smart thermostats in residential 44 
buildings a favourite candidate to offer significant DR capacity worldwide [2]. 45 
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However, fully automated DR programs based on smart thermostats having direct control 1 
over the users’ setpoint temperatures are a challenge for the comfort of the occupants and 2 
for the acceptance of the implemented setpoint modulations. Recent pilot studies have 3 
evidenced that not providing occupants with override possibilities is likely to be the cause of 4 
rejection and failure [3,4]. Thus, understanding and modelling occupants’ comfort-based 5 
interactions with smart thermostats is crucial for the design, assessment, and control of DR 6 
strategies. Given the highly dynamic thermal conditions induced during DR events, a 7 
detailed modelling of occupants’ dynamic thermal perception is also required. 8 

1.2. State-of-the-art 9 

Dynamic thermal comfort 10 
For evaluating the dynamic thermal environments induced by DR events, building modellers 11 
have so far mostly used Fanger's PMV/PPD method [5–12]. However, Fanger's model is 12 
derived from a steady-state heat balance equation and steady-state laboratory experiments 13 
[13] and is, therefore, only suited to predict thermal comfort under steady-state or slowly 14 
changing indoor conditions (temperature gradients less than 2 °C/h) [14]. Furthermore, the 15 
model is not able to predict thermal comfort under dynamic levels of activity. 16 
The recently developed multi-segment and multi-node thermo-physiological models (e.g. 17 
Tanabe [15], Fiala [16,17], the Berkeley Comfort Model [18] and ThermoSEM [19]) allow to 18 
model the physical interaction between an occupant and a dynamic indoor environment. In 19 
particular, they are able to simulate body core and skin temperatures for different regions 20 
of the human body under asymmetric environmental conditions. However, this high level of 21 
precision (and the computational burden associated with their implementation) is of little 22 
utility in most building energy simulations, which only provide average environmental 23 
conditions for the simulated thermal zones. Thus, they have not been largely applied for the 24 
prediction of thermal sensation and thermal comfort in the built environment. 25 

Thermostat adjustments 26 
In the context of building performance simulation, regression-based models are most often 27 
used for modelling the stochastic interactions of occupants with windows, shadings, 28 
lightings and thermal systems [20]. A majority of the regression-based studies focuses on 29 
window-opening behaviours and mainly use data collected from office buildings [21–25], 30 
while only a few studies have modelled occupants’ interaction with heating and/or cooling 31 
systems [21,26–32]. 32 
Regression-based models of occupants’ interaction with thermal systems are presented and 33 
reviewed in Table 1. A majority of these studies uses logistic regression models. Despite 34 
being simple to communicate and implement, logistic regression models only partially 35 
incorporate the diversity of occupant behaviour since they are often derived from a limited 36 
set of empirical data coming from small samples [33]. Furthermore, they only incorporate 37 
indoor temperature and relative humidity as predictors of thermal comfort and, therefore, 38 
are not able to account for the complexity and diversity of the dynamic thermal perceptual 39 
processes triggering thermal decisions [34]. 40 
 41 
 42 
 43 
 44 
 45 
 46 
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Table 1. Regression-based models of occupants’ interaction with heating and/or cooling systems. 1 
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[21] 
logistic 

regression 
p of having 

the heating on 
x          

11 office 
buildings in 

Sweden, UK, 
France, Portugal 

and Greece 

1 heating season 

[26] 
sigmoid 
function 

p of adjusting 
the AC-unit 

(both on and off) 
x x         

8 dwellings in 
Japan 

1 cooling season 

[27] 
logistic 

regression 
p of having 

the AC-unit on 
x         x 

39 rooms in a 
student 

dormitory in 
Tokyo, Japan 

6 weeks 
(cooling season), 

4 weeks 
(heating season) 

[28] 

three-
parameter 

Weibull 
distribution 

p of adjusting 
the AC-unit 

(both on and off) 
 x      x x  

3 dwellings in 
Beijing, 

Nanchang and 
Guangzhou, 

China 

2 months 
(cooling season) 

[29] 
logistic 

regression 

p of adjusting 
the thermostatic 

radiator valve 
(both increasing 
and decreasing) 

x   X x x x   x 
13 dwellings in 
Copenhagen, 

Denmark 

6 months 
(both heating 
and cooling 

seasons) 

[30] 
logistic 

regression 

p of adjusting 
the thermostat 
(both increasing 
and decreasing) 

 x      x   
1 office building 

in Ottawa, 
Canada 

1 year 
(both heating 
and cooling 

seasons) 

[31] 
logistic 

regression 
p of adjusting 

the thermostat 
x x  X x  x    

10 dwellings in 
Torquay, UK 

1 heating season 

[32] 
logistic 

regression 
p of adjusting 

the thermostat 
x x x   x    x 

11 dwellings in 
Cébazat, France 

1 heating season 

As an alternative to regression-based models and as a way to address the challenges 2 
outlined above, agent-based models (ABMs) are now emerging. ABMs offer a framework to 3 
model occupants as autonomous agents, which adapt their behaviour to be better suited to 4 
their environment. In the context of building performance simulation, ABMs have been 5 
developed for modelling various types of behaviours, including interactions with lighting and 6 
shading [35], while only few ABMs have attempted to model occupants’ interactions with 7 



Page 4 
 

heating and/or cooling systems. ABMs of occupants’ interaction with thermal systems are 1 
presented and reviewed in Table 2. 2 

Table 2. Agent-based models of occupants’ interaction with heating and/or cooling systems. 3 
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[36] 

Brahms 
environment + 

MATLAB/ 
Simulink + 

java interface 

PMV-based 
BDI 

architecture 
(rule-based) 

X  x  x    - - 

[37] 
EnergyPlus + 

MATLAB 
PMV-based 

cost function 
optimization 

 x x  x x x  - - 

[33] MATLAB survey-based 
PCT 

architecture 
(rule-based) 

X x   x    

1 office 
building in 

Philadelphia, 
USA 

1 year 
(both heating 
and cooling 

seasons) 

[38] 
EnergyPlus + 

NetLogo 
survey-based 

utility 
function 

minimization 
X x x x     

2 office 
buildings in 

Philadelphia, 
USA 

1 year 
(both heating 
and cooling 

seasons) 

[39] 

EnergyPlus + 
C++ + 

Functional 
Mockup 
Interface 

PMV-based Q-learning X        - - 

Kashif et al. use the Brahms language for modelling the casual relationships between 4 
environmental factors and occupants’ actions using the Belief-Desire-Intention (BDI) 5 
architecture [36]. Langevin et al. develop an ABM of fan, heater, and window use based on 6 
the theoretical framework of Perceptual Control Theory (PCT), by developing rules that 7 
always make occupants adopt the most immediate, unconstrained adaptive behaviour [33]. 8 
In Putra et al. occupant’s adaptive actions are estimated using a utility function (comprising 9 
environmental impact, effort, cost, and thermal discomfort), that occupants seek to 10 
minimize [38]. In the work of Chapman an agent learns the best setpoint daily schedules by 11 
using a Q-learning algorithm, which allows to reduce heating demand and improve 12 
occupants’ thermal comfort compared to deterministic schedules [39,40]. A limitation of 13 
these agent-based models, except of Kashif’s and Langevin’s approach which are rule-based, 14 
is that they assume a quasi-optimal heating behaviour, which is rarely true for real 15 
occupants, who have been shown to have imperfect grasps of how their thermostats and 16 
heating systems operate [41]. Furthermore, occupants’ thermal discomfort is mostly 17 
evaluated using the static Fanger's PMV/PPD model [36,37,39]. However, the environmental 18 
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conditions experienced by the occupants in residential buildings are rarely steady-state due 1 
to, for example, the use of setback and/or unheated spaces. Moreover, the occupants 2 
themselves are a possible cause of transient conditions because of the time-varying 3 
metabolic rates associated with the different activities carried out during the day [14]. 4 
Another limitation of these models is that they are either not calibrated or are calibrated 5 
with a limited set of empirical data coming from samples with a very small demographic 6 
basis. 7 

1.3. Research aims 8 
This paper describes, calibrates, and shows the in-use potentialities of a novel framework 9 
which can be used to model occupants’ interactions with thermostats in residential 10 
buildings in winter (Figure 1). The framework includes a stochastic agent-based model of 11 
thermostat adjustments, whose dynamic thermal discomfort predictions are based on a 12 
two-node thermo-physiological model coupled with a dynamic thermal perception model. 13 
This represents a novelty with respect to the most often used PMV/PPD model. However, 14 
the adopted solution is as simple to implement and run as Fanger’s model, far from the 15 
computational complexity represented by multi-segment and multi-node thermo-16 
physiological models. For the first time (in the context of thermostat adjustments 17 
modelling) we use a model which is able to dynamically simulate occupants’ thermo-18 
physiological responses, thus allowing to model the dynamic thermal perceptual processes 19 
triggering thermal actions. Furthermore, the agent-based model builds on an activity and 20 
presence model and, therefore, has the advantage of being able to account for the diversity 21 
of the activities carried out by the occupants, which leads to diverse setpoint schedules and 22 
metabolic rates. 23 
The three main components of the framework (occupant activity and presence model, 24 
thermostat adjustment model and dynamic thermal comfort model) are described in 25 
Section 2. The three models are coupled with the Building Energy Simulation (BES) tool 26 
incorporated within the python-based simulation platform DIMOSIM (DIstrict MOdeller and 27 
SIMulator), which can be used to predict energy demand at district level [42]. Thus, all the 28 
models are developed in Python and are directly embedded within DIMOSIM. 29 
For calibrating the thermostat adjustment model we use data from about 9,000 connected 30 
Canadian thermostats included in the Donate Your Data (DYD) dataset and presented in 31 
Sections 3.1 and 4.1. This calibration represents a further strength of the model since, for 32 
the majority of the thermostat models, calibrations are either not carried out or are 33 
performed over a limited set of empirical data. Finally, in Sections 3.2 and 4.2 we show an 34 
example of use of the framework: a simulation of occupants’ thermostat interactions under 35 
different types of setpoint modulations typically used to decrease the winter heating peak 36 
load in France. Limitations and future possible developments of the framework are 37 
discussed in Section 5. 38 
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 1 

Figure 1. Schematic view of the novel modelling framework. 2 

2. Models 3 
In this Section we describe the different models used. The stochastic activity and presence 4 
model and the dynamic thermal comfort model have been introduced, validated, and used 5 
in our previous works [43,44]. Thus, they are described with fewer details than the 6 
thermostat adjustment model, which instead represents the specific focus of this paper. 7 

2.1. Occupant model 8 
To model occupants’ activity and presence, we use a novel approach which directly employs 9 
the activity sequences or activity profiles (i.e. the daily times series of occupant activities) 10 
available from the French Time Use Survey (TUS) data (2009-2010 TUS campaign) [45]. 11 
About 27,900 daily logbooks are used to build the model. These 27,900 daily times series 12 
are first grouped according to the type of occupant (employed, unemployed, retired, 13 
student, stay-at-home and other) and the day of the week (weekend and weekday); this 14 
makes a total of 12 groups. Based on the assumption that most human behaviour is habitual 15 
and, therefore, characterized by daily routines which repeat themselves over the year, a 16 
hierarchical agglomerative clustering (HAC) is performed within each group to find clusters 17 
of similar daily profiles. The elbow method is used to find the appropriate number of 18 
clusters for each group, with each cluster containing between 80 and 500 logbooks. The 19 
following stochastic procedure is then applied to create different yearly synthetic activity 20 
patterns: 21 

• Draw both a weekend and a weekday cluster in the list of clusters corresponding to 22 
the type of occupant being simulated. 23 

• Draw the weeks of vacation according to the INSEE data [46]. 24 
For each day of the simulation: 25 

• If it is a weekday, draw a daily schedule within the weekday cluster and apply it. 26 

• If it is a weekend, draw a daily schedule within the weekend cluster and apply it. 27 

• If it is a vacation day, set the activity to other outside. 28 
Thus, in this modelling approach we do not use a few number of averaged probability 29 
distribution functions or transition probabilities as most current approaches do [47–53]. 30 
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Instead, our method uses the actual TUS activity sequences and, therefore, allows to 1 
account for the diversity of the real population in terms of occupancy and activities carried 2 
out at home [43]. As an example we show in Figure 2 the probability of the start times of 3 
the ‘doing laundry’ activity (at a given hour of the day) from about 600 households. This 4 
diversity is a key aspect of occupant behaviour modelling as evidenced by recent works [54–5 
56] and is especially important for peak demand studies. 6 

  

Figure 2. Probability of the start times of the ‘doing laundry’ activity at a given hour of the day for the 7 
simulated Couples of Retired People Without Children (left) and Couples of Employed People Without Children 8 

(right) from [43]. Each figure shows about 600 households. 9 

The stochastic activity profiles are assumed to be independent of the environmental inputs 10 
and, therefore, are computed in a pre-process respect to the thermal simulation (see Figure 11 
1). Since the synthetic activity patterns are drawn independently for each member of the 12 
household, a limitation of this approach is the possible incoherence between occupants of 13 
the same household. However, holiday periods are predicted at the level of the household 14 
and, therefore, are the same for all the occupants. Another limitation is the lack of seasonal 15 
patterns. For more details on the derivation and validation of the activity and presence 16 
model the reader is referred to our previous paper [43]. 17 
The output of the occupant model is made up of the time series of activity and presence (i.e. 18 
occupant at home and awake) derived for each occupant of the household. The activity time 19 
series are then converted into time series of metabolic heat rate by using distributions 20 
obtained from the ASHRAE reference tables of metabolic rates for common activities [57]. 21 
The estimated metabolic heat associated with the occupant’s activity (MET) is, in turn, an 22 
input of the dynamic thermal comfort model. While the status of the occupant (at home, at 23 
home sleeping, not at home status), which is also deduced from the occupant activity time 24 
series, is an input of the thermostat adjustment model. See Figure 1 for an overview of the 25 
input and output variables of the different models. 26 

2.2. Dynamic thermal comfort model 27 
For the dynamic thermal comfort predictions, we use a novel model, which comprises two 28 
main elements: 29 

• a simple two-node thermo-physiological model able to simulate the body core and 30 
mean skin temperatures under uniform conditions, 31 

• a dynamic thermal perception model which uses the simulated body core and mean 32 
skin temperatures to predict both thermal sensation and thermal comfort. 33 

The selected thermo-physiological model is an updated version of the classical Gagge’s two-34 
node model, also known as Pierce’s two-node model [58]. For predicting the dynamic 35 
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thermal sensation, we opt for an updated version of Fiala’s Dynamic Thermal Sensation 1 
(���) model [59]. Finally, for the prediction of thermal comfort, we derive a new model, 2 
which calculates the Dynamic Percentage of Dissatisfied (���) from the dynamic thermal 3 
sensation, thus mimicking the structure of the classical Fanger’s PPD index. A schematic 4 
view of the dynamic thermal comfort model is given in Figure 3. The inputs of Gagge’s two-5 
node model are the six basic parameters: air temperature (��), mean radiant temperature 6 
(��), air velocity (��), relative humidity (	
), clothing insulation (��
) and metabolic heat 7 
generated by human activity (���). The inputs of the Dynamic Thermal Sensation (���) 8 
model are the mean skin and body core temperature (����� and ���,����) and the rate of 9 

change of the mean skin temperature (
����,����

� ). The inputs of the Dynamic Percentage of 10 

Dissatisfied (���) model are the ��� and the 
����,����

� . 11 

 12 

Figure 3. Schematic view of the novel dynamic thermal comfort model. 13 

In Gagge’s two-node model [58], the human body (i.e. the passive/controlled system of 14 
human thermoregulation) is simulated as two concentric thermal compartments: a core 15 
cylinder (representing muscle, subcutaneous tissue and bone) surrounded by a thin skin 16 
outer layer. The model simulates the heat transfers between the two compartments and 17 
between the outer layer and the environment. The temperature within each compartment 18 
is assumed to be uniform. The active/controlling system is based on a linear, temperature-19 
based control theory of human thermoregulation and is made of empirical equations 20 
simulating the regulatory responses of shivering, vasoconstriction, vasodilatation, and 21 
sweating. 22 
Despite its simple representation of the human body, Gagge’s two-node model is accurate 23 
for practical applications in the built environment where environmental conditions are 24 
usually near the neutrality and activity levels are mostly lower than 3.5 met [60–62]. 25 
However, we have further extended the predictive capabilities of Gagge’s two-node model 26 
by substituting its simple linear, temperature-based active system model with Fiala’s non-27 
linear, temperature-based active system model, whose empirical control equations for 28 
shivering, vasoconstriction, vasodilatation, and sweating have been derived from statistical 29 
analysis of a wide range of data coming from 27 climate chamber experiments covering air 30 
temperatures between 5°C and 50°C and exercise intensities between 0.8 met and 10 met 31 
[16]. For more details on the accuracy of the updated Gagge’s two-node model the reader is 32 
referred to our previous work [44]. 33 
Fiala’s ��� model [59] is able to predict the whole-body thermal sensation on the seven-34 
point ASHRAE scale and is composed of three main parts: 35 
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• a first part - as a function of ���,���� - to model the response of sedentary subjects 1 
under steady-state environmental conditions, 2 

• a second part - as a function of ����� weighted by ���,���� - accounting for effects 3 
associated with exercise and warm body core temperatures, 4 

• a third part - as a function of both positive and negative 
����,����

�  - dealing with the 5 

dynamic components of thermal sensation observed in transient thermal conditions. 6 
Fiala refers to the first and second parts as the static comfort model, while the third part 7 
represents the dynamic component of human thermal sensation. The model was developed 8 
from regression analysis of data coming from 220 climate chamber exposures to air 9 
temperatures between 13°C and 48°C and activity levels between 1 met and 10 met [59]. 10 
However, for the dynamic component, Fiala used a limited set of experimental data coming 11 
from only two exposures to sudden step-changes in air temperature: 28-18-28°C and 28-48-12 
28°C [63]. Given this limitation, we have updated the dynamic part using additional 13 
experimental data coming from both cyclical [64] and step-change transient thermal 14 
conditions [65,66]. For more details on the accuracy of the updated Fiala DTS model the 15 
reader is referred to our previous work [44]. 16 
Finally, we have derived a new model, which is able to calculate the Dynamic Percentage of 17 
Dissatisfied (���) from the dynamic thermal sensation, thus mimicking the structure of the 18 
classical Fanger’s PPD index. Fanger’s well-known non-linear relationship between PMV and 19 PPD is derived from steady-state laboratory experiments involving 1300 subjects and is 20 
given by: 21 

%%& =  ) − +. -. ∙ 012+.+33.3∙%4562+.7)8-∙%4579 (1) 

By using experimental data derived from dynamic experiments in climate chambers [64], we 22 
have derived a new dynamic version of Fanger’s static PPD index, which is given by: 23 

&%& = ) − +. -. ∙ 0:2+.+33.3 ∙;&<=>? ∙@?ABCD<EF,G0?AD@ HI62+.7)8- ∙;&<=>? ∙@?ABCD<EF,G0?AD@ HI7J + L ∙ @?AB CD<EF,G0?AD@ H (2) 

where: 24 

• The parameter M accounts for the fact that the dynamic thermal perception 25 
horizontally shifts subjects’ neutral conditions (at which maximum comfort is felt) 26 
towards warm thermal sensations during warming transients and cold thermal 27 
sensations during cooling transients. This is due to the warming and cooling 28 
overshoots of thermal sensation occurring during warming and cooling transients, 29 
respectively. In warm and cold conditions, the coefficient M is equal to −0.2151 for 30 

cooling gradients 
����,����

� 
(2)

 and −0.5424 for warming gradients 
����,����

� 
(>)

. 31 

• The parameter U accounts for the alliesthesial effect which causes a vertical thermal 32 
comfort shift: in warm conditions cooling transients elicit pleasure and, therefore, 33 
increased satisfaction, while warming transients elicit displeasure and, therefore, 34 
decreased satisfaction. The opposite is true in cold conditions. In warm conditions, 35 

the coefficient b is equal to −0.0251 for cooling gradients 
����,����

� 
(2)

 and −0.0679 36 

for warming gradients 
����,����

� 
(>)

, while in cold conditions the opposite is true, i.e. 37 

the coefficient b is equal to +0.0251 for cooling gradients 
����,����

� 
(2)

 and +0.0679 38 

for warming gradients 
����,����

� 
(>)

. 39 
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The parameters M and U of Equation (2) are obtained by minimizing the RMSE during both 1 
cooling and warming transients using the Nelder-Mead Algorithm. Accuracy of the novel 2 
DPD in terms of RMSE falls between 4 and 6%. 3 
For the literature on the phenomenon of thermal alliesthesia the reader is referred to the 4 
works of Cabanac [67], Attia [68], Zhang [69–71], Parkinson [72] and Vellei & Le Dréau [73]. 5 
For more details on the derivation and validation of the dynamic thermal comfort model the 6 
reader is referred to our previous work [44]. The dynamic thermal comfort model coded in 7 
Python is available for download in the supplementary materials. 8 
An example of the simulated ��� and ��� over the course of a day for both the case of a 9 
constant metabolic rate equal to 1.2 met and a time-varying metabolic rate is shown in 10 
Figure 4. We only calculate ��� and ��� for time-steps where the occupants are at home 11 
and awake. After periods of sleeping or periods when the occupant is not at home, we 12 
assume that the initial comfort conditions are equal to the final conditions of the previous - 13 
at home and awake - period. In Figure 4 we can observe that the met variations have a non-14 
negligible effect on the comfort of the occupants. This is a confirmation of the importance 15 
of modelling the stochastic time-varying met levels which, as we will see in the Results, also 16 
influence the comfort-driven thermostat adjustments. 17 

 18 

Figure 4. Example of dynamic thermal comfort predictions for an occupant of type unemployed during typical 19 
daily MET variations. All the other parameters are fixed (�� = �� = 21°�, �� = 0.1 [/], 	
 = 50%, _`a =20 1.2). Only time-steps where the occupant is at home and awake are shown. 21 

2.3. Agent-based thermostat model 22 
Modelling the interactions with thermal systems is even more challenging than window and 23 
lighting interactions since programmable thermostats give the opportunity to schedule in 24 
advance different temperatures at different times of the day. Thus, there are the multiple 25 
challenges of modelling: 26 
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• the default setpoint temperatures, 1 

• the operation schedule, 2 

• and the manual overriding behaviour. 3 
In our agent-based thermostat model, we assume that each household is equipped with a 4 
programmable thermostat which can be used to set a schedule for: 5 

• the day setpoint temperature (Tcdefghie,jkl) for when somebody who is not sleeping 6 

is at home (at home status), 7 

• the night setpoint temperature (Tcdefghie,ihmne) for when everybody who is at home is 8 

sleeping (at home sleeping status), 9 

• the set-back temperature (Tcdeokpq) for when nobody is at home (not at home 10 
status). 11 

The default setpoint temperatures (Tcdefghie,jkl, Tcdefghie,ihmne, and Tcdeokpq) can be 12 

modelled as a function of a variety of different factors (the household’s socio-economic 13 
characteristics and composition, the dwelling’s features, the type of heating system, heating 14 
delivery system and user interface to control it, the outdoor weather, etc.). In this paper, we 15 
do not model the diversity of the default setpoint temperatures but we rather focus on 16 
modelling the operation schedule and the manual overriding behaviour. For the simulations 17 
of Sections 3.1 and 3.2, the default setpoint temperatures are set to some fixed values. 18 
For each household, the operation schedule is estimated based on the occupants’ activity 19 
and presence profile time series by calculating the hourly probability of having each 20 
household’s status (at home, at home sleeping, not at home) over the simulated period. For 21 
each hour of the day, the status with the highest probability of occurring defines the 22 
corresponding hourly scheduled/default temperature (Tcdefghie,jkl, Tcdefghie,ihmne, and 23 

Tcdeokpq) for the household. This hourly profile is then repeated for each day throughout the 24 
simulation period. Thus, the hourly setpoint schedule is defined for each household in a pre-25 
process with respect to the dynamic thermal simulation (see Figure 1 for the overall 26 
modelling framework), while the manual overriding behaviour is dynamically simulated. 27 
Some examples of operation schedules are shown in Figure 5. Since having a programmable 28 
thermostat does not necessarily implies using programmable features [41], defining an 29 
operation schedule does not necessarily imply that each household is using a night setpoint 30 
temperature or a setback temperature. In the process of drawing the default setpoint 31 
temperatures, some households might have Tcdefghie,ihmne = Tcdefghie,jkl and/or Tcdeokpq =32 

Tcdefghie,jkl and, therefore, not use any schedule. But, again, this depends on the model of 33 

the default setpoint temperatures, which is not covered in this paper. 34 
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 1 

Figure 5. Example of operation schedule for different occupants of type unemployed. The default setpoint 2 
temperatures are set equal to: ��� r�s� ,t�u = 21°�, ��� r�s� ,�svw = 18°�, and ��� y��� = 15°�. 3 

The manual overriding behaviour is modelled using an ABM approach: each member of the 4 
household is represented as an agent with a set of attributes (status, clothing, and 5 
metabolic rate) and a set of possible adaptive actions (setpoint and clothing adjustment). 6 

Data-driven ABM model foundation 7 
The empirical foundation of the ABM model is the DYD dataset which contains usage data 8 
from more than 100,000 ecobee connected thermostats mainly installed in North America 9 
and collected over multiple years [74–77]. The dataset is made of five-minute time series of 10 
indoor air temperature, relative humidity and passive infrared (PIR) motion, which are 11 
sensed at the thermostat and at any connected remote sensors whose placement depends 12 
on the user. The monitored indoor air temperature (��) is the temperature compared to the 13 
setpoint temperature and, therefore, used to control the thermal system. In the simplest 14 
configuration, �� is given as a mean of the temperature sensed at the thermostat and at any 15 
connected remote sensors. However, depending on the choice of configuration made by the 16 
user, the sensed temperatures can be weighted by either the programmed thermostat 17 
schedule or the detected occupancy. The dataset also includes user-reported metadata of 18 
home and occupant characteristics. An overview of the dataset can be found in [74]. 19 
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An Internet-connected thermostat, such as the ecobee thermostat, allows users to set a 1 
weekly operation schedule (i.e. to set different heating and cooling setpoint temperatures 2 
at different times of the day) and has manual control functionalities through web, mobile 3 
and voice platforms. For the derivation of the thermostat adjustment model we want to 4 
understand how occupants interact with their thermostats and, therefore, we focus on the 5 
analysis of the manual setpoint adjustments, which are deliberate user overrides of a 6 
scheduled/default setpoint temperature. For each manual setpoint adjustment, we 7 
compute the corresponding setpoint temperature change, which could be either an increase 8 
or decrease. A time-step is considered occupied if any motion is detected by any motion 9 
sensor (remote, or on the thermostat itself), i.e. if the occupants are at home and are not 10 
sleeping. The resulting occupancy time series are further processed to ‘fill in’ short 11 
unoccupied periods of 30 min where the occupants may have been temporarily hidden from 12 
the sensor, using a similar approach of [75] and [77]. The PIR sensors give many false 13 
negatives but have the advantage to have only few false positives [75]. We apply the 14 
following selection criteria to the DYD dataset: 15 

• we only consider thermostats in Canadian homes, 16 

• we only take data from winter months characterized by a mean monthly outdoor 17 
temperature lower than 15°C, 18 

• we exclude thermostats containing less than 10 days of detected occupied time-19 
steps. 20 

Thus, our data comes from about 9,000 thermostats. 21 
In Figure 6 we show aggregated mean data from the selected 9,000 thermostats. In Figure 6 22 
(left) we can observe that, at equal indoor air temperature, the mean number of manual 23 
setpoint adjustments per hour of occupancy differs for the different default setpoint 24 
temperatures (��� r�s� ,t�z�{| ). The default setpoint temperature is calculated for each 25 

thermostat as the mean heating setpoint temperature during occupied time-steps. In Figure 26 
6 (right) we can further observe that when the occupants decide to change their heating 27 
setpoint they do so differently at different default setpoint temperatures. In particular, at 28 �� = ��� r�s� ,t�z�{|  the mean setpoint change is approaching zero when the default 29 

setpoint temperature is higher than 20°C. This means that occupants adapt to their chosen 30 
prevailing setpoint temperature. In our ABM modelling approach we assume that this 31 
adaptation consists in selecting the occupants’ default clothing level based on the 32 Tcdefghie,jkl. Thus, for each occupant we calculate a default clothing level for comfort by 33 

using the PMV model and by setting �� = �� = Tcdefghie,jkl. As an example, for the 34 

simulations described in Sections 3.1 and 3.2 and run at ��� r�s� ,t�u = 21°� the default 35 

clothing insulation is calculated to be equal to 1.2 clo, i.e. the value corresponding to a 36 ��� ≈ 0 at average values of the other comfort parameters (	
 = 50%, �� = 0.1[/] and 37 ��� = 1.2 [~�). The default clothing insulation and the default setpoint temperature are 38 
then modified by the occupants over the course of the dynamic simulation. 39 
From the patterns of Figure 6 (left and right), we can further observe that the mean number 40 
of manual adjustments decreases at increasing indoor air temperatures, while we would 41 
expect the curve to be symmetrical around the setpoint. Also, the mean temperature 42 
change per manual adjustment saturates at a value approximately equal to -0.5°C. This 43 
could be due to the phenomenon of seasonal thermal alliesthesia according to which 44 
occupants tend to accept warmer thermal sensations in winter and colder ones in summer 45 
[78–80]. However, this could also be due to the fact that when the air temperature is higher 46 
than the setpoint, setting a very low heating setpoint would not imply to actively cool the 47 
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building given that the large majority of the heating systems in Canada are either forced-air 1 
furnaces or electric baseboard heaters (i.e. not reversible). In order to account for this 2 
asymmetrical adjustment behaviour, in our ABM model we separately model manual 3 
adjustments during warm and cold conditions. This is further explained in the next 4 
paragraph. 5 

  

Figure 6. Mean number of manual heating setpoint adjustments per hour of occupancy (left) and mean heating 6 
setpoint changes per manual adjustment (right) for the DYD thermostats at different levels of the setpoint 7 

temperature. The data are from about 9,000 thermostats and are binned as function of the indoor air 8 
temperature. Error bars represent confidence intervals of the estimated mean for each bin. 9 

Theory-driven model foundation 10 
The adaptive principle (“if a change occurs such as to produce discomfort, people react in 11 
ways that tend to restore their comfort” [81]) is assumed to be at the base of the manual 12 
overriding behaviour. When the occupant agent is at home and is not sleeping, he reacts to 13 
environmental and personal changes according to this principle. For modelling the agent’s 14 
adaptive behaviour, we use a particular type of agent: the Belief-Desire-Intention (BDI) 15 
agent, which is characterized by certain mental attitudes of belief, desire, and intention, 16 
representing its informational, motivational, and deliberative states respectively [82]. First, 17 
a BDI agent obtains a belief about the state of its current environment. In our case, 18 
environmental and personal conditions form the occupant’s thermal dissatisfaction, which is 19 
represented by the Dynamic Thermal Sensation (���) and Dynamic Percentage of 20 
Dissatisfied (���). Then, the agent translates its thermal dissatisfaction into a desire about 21 
what to achieve, i.e. whether to change its current thermal state. This is predicted using a 22 
time-dependent Bernoulli process. A uniformly distributed random number � is drawn in 23 
[0,1[ and compared to the ���. If the ��� is more than the random number �, the desired 24 
outcome is to change its current state. Finally, the agent translates its desire into an 25 
intention to act (occupant’s adaptive behaviour). The agent’s intention is defined by the 26 
probabilities of reactively adjusting the clothing ��t�,�|� ws�v (before) and the setpoint 27 

temperature ��t�,�� r�s�  (afterwards) using a time-dependent Bernoulli process. Thus, it is 28 

assumed that the adjustment of the clothing insulation is the preferred adaptation strategy. 29 
The probably of adjusting the setpoint during warm exposures ��t�,����,�� r�s�  is different 30 

than during cold exposures ��t�,��|t,�� r�s�  according to the alliesthesia-based asymmetry 31 

observed in Figure 6 of the previous paragraph. It is further assumed that when the agent 32 
decides to adjust its clothing, he does it modularly by either increasing or decreasing the 33 
clothing of ���
 = 0.1 _`a, where 0.1 _`a is, for example, the clothing insulation change 34 
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made when passing from a thin long-sleeved sweater to a thick long-sleeved sweater [57]. 1 
While, when the occupant decides to adjust the setpoint of ���� r�s� , he does it to restore 2 

thermal neutrality (i.e. towards a ��� ≈ 0). The Tcdefghie has a lower limit equal to 3 

Tcdefghie,jkl-1°C during warm exposures and an upper limit equal to Tcdefghie,jkl+6°C during 4 

cold exposures, always based on what observed in Figure 6 of the previous paragraph. 5 
Conflicts between members of the households also need to be taken into account because, 6 
at a given simulation time-step, an occupant might want to increase the setpoint 7 
temperature and another to decrease it. We solved these conflicts by ranking the members 8 
of the households by importance order (the ranking is random and it does not depend on 9 
the type of occupant). The decisions of the first-ranked occupant prevail over the others; 10 
the decisions of the second-ranked prevail over the others with the exception of the first-11 
ranked and so on. Thus, if the first-ranked decides to change the setpoint temperature, the 12 
other members of the household are not able to override its decision. The model does not 13 
account for any learning of the agent over time. The agent-based modelling framework for 14 
the manual overriding behaviour is represented in Figure 7. 15 

 16 

Figure 7. Simplified flowchart of the framework used to model agent’s adaptive behaviour. 17 

3. Methods 18 
The methodology used for calibrating the thermostat adjustment model is described in 19 
Section 3.1, while in Section 3.2 we show an example of application of the model for the 20 
study of DR events. In both cases, dynamic thermal simulations are used to reproduce 21 
typical indoor environmental conditions encountered in residential households during the 22 
heating season. All the presented dynamic thermal simulations are carried out within 23 
DIMOSIM, which use a mono-zone building model [42]. The thermal model of each 24 
household is composed of more than 20 thermal capacities (discretisation of walls in 4 25 
layers) and is solved using finite difference methods. For all the simulations, we select a 26 
time-step of 2 minutes in order to better capture perceptual and behavioural dynamic 27 
processes. We assume that each household is equipped with a programmable thermostat 28 
and is using a schedule for setting Tcdefghie,jkl = 21°C, Tcdefghie,ihmne = 18°C and Tcdeokpq =29 
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15°C. Since the calibration is done with respect to the indoor temperature, we not need to 1 
simulate the actual Tcdefghie,ihmne and Tcdeokpq of the 9,000 Canadian buildings where the 2 

thermostats are located. However, Tcdefghie,jkl has to be set equal to 21°C since we are 3 

calibrating the model against ecobee households having a mean heating setpoint 4 
temperature during occupied time-steps equal to 21°C. The winter default clothing level of 5 
the occupants is set equal to 1.2 clo, as seen in Section 2.3. For the inputs of the ���/��� 6 
model, the air velocity (��) is set to be equal to 0.1 m/s and the relative humidity (	
) equal 7 
to 50%. 8 

3.1. Calibration with connected thermostat data 9 
The calibration of the thermostat adjustment model consists in estimating ��t�,�|� ws�v, 10 

��t�,����,�� r�s�  and ��t�,��|t,�� r�s�  which are the key probabilities needed to map 11 

occupant thermal perception onto its adaptive behaviour. To do this, we first set 12 ��t�,�|� ws�v = � ∗ ��t�,��|t,�� r�s�  and ��t�,����,�� r�s� = ��t�,��|t,�� r�s� /[. Then, we 13 

estimate �, [, and ��t�,��|t,�� r�s�  by simulating a diverse set of households and buildings 14 

and using a simple iterative qualitative method in which we visually compare the simulated 15 
and empirical values of two different metrics: the number of manual setpoint adjustments 16 
per hour of occupancy and the setpoint change per manual adjustment, given as a function 17 
of the indoor temperature. Thus, the model is calibrated at an aggregated level and not at 18 
the level of the individual household. The empirical values are coming from the DYD dataset, 19 
which has been already introduced in Section 2.3 (see also Figure 6). The simulated data 20 
origins from a combination of the following selected cases: 21 

• Two residential buildings characterized by different levels of insulation: a typical 22 
existing single-family house (SFH 1982) and a newly-built single-family house (SFH 23 
2012). For more details of the case study buildings see Section 3.3. It is important to 24 
highlight that the calibration is done with respect to the indoor temperature and, 25 
therefore, we not need to simulate the actual 9,000 Canadian buildings where the 26 
thermostats are located. However, by simulating two very different buildings in 27 
terms of insulation (SFH 1982 and SFH 2012) we can at least ensure them having a 28 
wide range of temperature and dynamics. Furthermore, we equipped the buildings 29 
with convectors, which are mainly emitting heat by convection (80%) and, therefore, 30 
we can assume that the thermal dynamics are very similar to those associated with 31 
forced-air furnaces, which represents the large majority of the heating systems in 32 
the DYD dataset and, in general, in Canada. 33 

• Four different types of households: family of 4 (2 employed +2 students), couple of 34 
retired (2 retired), couple of employed (2 employed) and single adult living alone 35 
unemployed (1 unemployed). 36 

Given the stochastic nature of the occupant model each simulation is repeated 50 times. 37 

3.2. DR application 38 
As an example of application of the thermostat adjustment model, we show how the model 39 
can be used to predict occupants’ override actions during DR events. In particular, we want 40 
to derive a relation that links override rates with both the indoor temperature and the time 41 
since the start of the DR event. We use here the term ‘override’ instead of ‘adjustment’ 42 
since this is the most often used term in the context of DR studies when referring to 43 
occupants’ adjustments. We simulate different occupants (family of 4, couple of retired, 44 
couple of employed and single adult living alone unemployed) and buildings (SFH 1982 and 45 
SFH 2012) under three different scenarios: 46 
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• A scenario without any DR event indicated as “w/o DR”. 1 

• A scenario with DR event indicated as “with DR”. 2 

• A scenario with DR event but without the modelled manual adjustments. This case is 3 
indicated as “with DR no Adj”. 4 

The simulated DR events take the form of 2 and 4 hours continuous downward modulations 5 
(to a lower limit of 15°C) of the heating setpoint temperature. These modulations can be 6 
implemented in response to the typical two-rate Time Of Use (TOU) tariffs available 7 
nowadays in France and are useful to directly decrease the load during winter peak hours. 8 
The simulated DR events are activated daily during the coldest month of January and the 9 
starting time is set at 6:00 pm, which coincides with the daily peak of the electrical load in 10 
winter in France [83]. Table 3 shows an overview of all the simulated cases for each studied 11 
parameter (a total of 48 cases repeated each 50 times). 12 
Finally, in order to derive the override rates as a function of the distance from the setpoint 13 
temperature and the time from the start of the DR event we re-simulate all the building and 14 
occupant types under the 4 hours setpoint modulation with the modelled manual 15 
adjustments (“with DR”) but with the setpoint change per manual adjustment always equal 16 
to zero. In this way, for each interval of time from the start of the DR event and at equal 17 
minimum indoor temperature reached in this interval, we are able to derive the observed 18 
mean override rate. If the manual adjustment was not set equal to zero, we would not been 19 
able to estimate the minimum indoor temperature reached in each interval. 20 

Table 3. Selected cases for each studied parameter. 21 
Single Family 

House 
1982 2012   

Occupant 

Type 

Couple of 

Employed 

Couple of 

Retired 

Single 

Unemployed 
Family of 4 

DR with 2h with 4h without  

Setpoint Manual 

Adjustments 
with without   

3.3. Case study buildings 22 
Two typical single-family houses are chosen as case studies: SFH 1982 (old existing house) 23 
and SFH 2012 (newly-built house). The main thermal characteristics of the simulated 24 
buildings can be found in Table 4. They are insulated from the inside and are equipped with 25 
mechanical extraction, which is automatic for the old building (SFH 1982) and humidity-26 
controlled for the new building (SFH 2012). Both single-family houses are two-storey 27 
buildings and have a floor area of 141 m². Regarding the type of emitter, convectors are 28 
selected. Since the type of controller influences the dynamics of the building and, thus, the 29 
dynamic thermal comfort prediction, a proportional-integral controller is implemented for 30 
each convector. 31 

Table 4. Main thermal characteristics of the simulated buildings. 32 

Thermal 

characteristic 
SFH 1982 SFH 2012 

Insulation 

Walls 

4 cm IWI 18 cm IWI 

(U=0.64 W/m²K) (U=0.18 W/m²K) 

Insulation 

Roof 

8 cm 28 cm 

(U=0.58 W/m²K) (U=0.13 W/m²K) 
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Insulation 

Floor 

8 cm 16 cm 

(U=0.45 W/m²K) (U=0.23 W/m²K) 

Windows 

double glazing double glazing 

(Uw=3.1W/m²K,g=0.75) 
(Uw=1.5W/m²K,g=0.63

) 

Ventilation 0.54 ACH 0.42 ACH (mean) 

Infiltration 0.35 ACH 0.12 ACH 

HLC 336 W/K 122 W/K 

4. Results 1 

4.1. Calibration of the agent-based thermostat model 2 
As a result of the calibration shown in Figure 8 and Figure 9, we have estimated � = 3, [ =3 6 and ��t�,��|t,�� r�s� = 0.025 based on a time-step of 2 minutes. In Figure 8 (upper) we 4 

show the distribution (mean and standard deviation) of the number of manual heating 5 
setpoint adjustments per hour of occupancy and binned as a function of the indoor air 6 
temperature for both observed and simulated data. The observed data are from DYD 7 
connected thermostats having a default setpoint temperature of 21°C. From the observed 8 
DYD data at Tk = 21°C we have a mean number of manual setpoint adjustments per hour of 9 
occupancy (i.e. occupants at home and not sleeping) equal to about 0.04. For a dwelling 10 
occupied for 6 hours per day, this corresponds to about 1 manual adjustment every four 11 
days. The mean number of manual setpoint adjustments per hour of occupancy can be also 12 
interpreted as the mean probability of having a manual adjustment during an occupied 13 
hour. In Figure 8 (lower) we show the distribution (mean and standard deviation) of the 14 
heating setpoint change per manual adjustment binned as a function of the indoor air 15 
temperature for both observed and simulated data. At Tk = 21°C the observed mean 16 
heating setpoint change is nearly equal to zero. From Figure 8 (lower and upper) we can 17 
observe that there is a good agreement between observed and simulated data. In particular, 18 
the similarity of the curve slope demonstrates the validity of the structure of the model, 19 
which is comfort-based (i.e. based on ��� and ���). The large observed variation within 20 
the different occupant types is due to the diversity of the 50 simulated households in terms 21 
of activity patterns. 22 

 23 
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 1 

Figure 8. Mean number of manual heating setpoint adjustments per hour of occupancy (upper) and mean 2 
heating setpoint changes per manual adjustment (lower) for observed (DYD) in black and simulated in colours 3 

data. Data are binned as function of the hour of the day and are for the two types of buildings confounded. 4 
Error bars represent the standard deviation of the observations for each bin. 5 

In Figure 9 we show the number of manual heating setpoint adjustments per hour of 6 
occupancy (upper) and the heating setpoint change per manual adjustment (lower) at Tk =7 21°C and binned as function of the hour of the day. From the patterns of Figure 9 (upper 8 
and lower), we can see that between 6:00 pm and 24:00 pm there is an increase in the 9 
simulated manual adjustments compared to the observed ones and also an increase in the 10 
setpoint change per manual adjustment. This is due to the lower metabolic rates observed 11 
during these hours of the day (see also Figure 10). The difference between simulated and 12 
observed data could be related to the fact that, when the metabolic rate is lower than 1 13 
met, occupants are in a reclining position so they adjust the clothing more than under 14 
higher metabolic rates (by, for example, covering up with a blanket while watching TV). This 15 
behaviour is currently not accounted for in our model. 16 

 17 
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 1 

Figure 9. Mean number of manual heating setpoint adjustments per hour of occupancy (upper) and mean 2 
heating setpoint changes per manual adjustment (lower) for observed (DYD) in black and simulated in colours 3 
data at an indoor air temperature equal to 21°C. Data are binned as function of the hour of the day and are for 4 
the two types of buildings confounded. Error bars represent the standard deviation of the observations for each 5 

bin. 6 

 7 

Figure 10. Mean metabolic rates binned as function of the hour of the day for the different types of simulated 8 
occupants. Error bars represent the standard deviation of the observations for each bin. 9 

Finally, Figure 11 shows the mean clothing insulation values for the different types of 10 
occupants as a function of the indoor air temperature. This plot shows the results of the 11 
simulated occupants’ clothing adaptive behaviour. 12 
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 1 

Figure 11. Mean clothing insulation values binned as function of the indoor air temperature for the different 2 
types of simulated occupants. Error bars represent the standard deviation of the observations for each bin. 3 

4.2. DR application 4 
In Figure 12 we show the number of manual heating setpoint adjustments per hour of 5 
occupancy binned as a function of the hour of the day for three different simulated 6 
scenarios (without DR event, with 2h DR event with Adjustments, with 2h DR event without 7 
Adjustments) in the old (upper) and new (lower) buildings. The scenario simulated without 8 
DR event corresponds to the lower number of adjustments; these adjustments are due to 9 
scheduled variations in the indoor temperature and to the time-varying metabolic rates, 10 
which cause an increase of the number of adjustments especially between 6:00 pm and 11 
24:00 pm due to the lower metabolic rates observed during these hours of the day (see also 12 
Figure 10). In the case of the old building, the number of these adjustments is limited 13 
compared to the increase in number of adjustments caused by the 2-hours downward 14 
temperature modulation. While for the new building, the increase is of the same magnitude 15 
than the other adjustments. Thus, we can draw a first conclusion by saying that, in new 16 
buildings, 2 hours downward modulations cause an adjustment effort similar to that 17 
normally experienced by occupants during the day. While for the old buildings this effort is 18 
much bigger and, therefore, DR events have to be more carefully designed and controlled. 19 

 20 
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 1 

Figure 12. Mean number of manual heating setpoint adjustments per hour of occupancy for the old (upper) and 2 
the new (lower) building type for all the different types of occupants confounded. The 2-hour DR event is 3 

highlighted in red. Data are binned as function of the hour of the day. 4 

In Figure 13 we show the indoor air temperature per hour of occupancy for three different 5 
simulated scenarios (without DR event, with 4h DR event with Adjustments, with 4h DR 6 
event without Adjustments) in the old (upper) and new (lower) building. In the scenario 7 
simulated with Adjustments, we can observe that the indoor temperature saturates to a 8 
minimum value equal to 18.5°C for the old building and 19°C for the new building. 9 

 10 
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 1 

Figure 13. Indoor air temperature per hour of occupancy for three different simulated scenarios in the old 2 
(upper) and new (lower) building type and for all the different types of occupants confounded. The 4-hour DR 3 

event is highlighted in red. Data are binned as function of the hour of the day. Error bars represent one 4 
standard deviation of uncertainty for each bin. 5 

Finally, in Figure 14 we derive the override rates as a function of the distance from the 6 
setpoint temperature and the time from the start of the DR event. This plot can be read in 7 
the following way: if at time ���[~ from the start of the DR event we are at distance 8 ���� r�s�  from the setpoint temperature, then the probability of adjusting the thermostat 9 

is given by the override rate 
	. Similarly, in Figure 15 we show curves at equal Override 10 
Rate as a function of the distance from the setpoint temperature and the time from the 11 
start of the DR event. For example, in the case of having a Tcdefghie,jkl = 21°C, a 20% 12 

rejection rate corresponds to going either as low as 16°C for 1 hour or as low as 19°C for 3 13 
hours. Figure 14 and Figure 15 also tell us that for a setpoint modulation of 30 minutes the 14 
override rate is always lower or equal than 10% so this is the safer option for a DR utility 15 
company. 16 

 17 

Figure 14. Override rate as a function of the distance from the setpoint temperature and the time from the start 18 
of the DR event. 19 
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 1 

Figure 15. Curves at equal Override Rate (OR) as a function of the distance from the setpoint temperature and 2 
the time from the start of the DR event. 3 

5. Limitations and future developments 4 
Drivers of occupants’ interactions with thermal systems and, in particular, with heating 5 
systems are related not only to the physiological conditions of the occupants, but also to 6 
their psychological situations, which in turns depend on several factors: 7 

• the household’s socio-economic characteristics and composition, 8 

• the dwelling’s size, type, energy-efficiency, and ownership, 9 

• the type of heating system, heating delivery system and user interface to control it, 10 

• the heating costs (e.g. heating bills already included in the rent or not, individual or 11 
collective heating systems). 12 

The same factors also influence the chosen setpoint temperatures [29]. In this paper we do 13 
not model any influence of the above factors on the thermal adaptive behaviour of the 14 
occupants. However, the agent-based modelling framework can be extended to account for 15 
some of the above factors by adding new attributes to the agents. For example, by using the 16 
DYD dataset it would be possible to differently calibrate the probabilities ��t�,�|� ws�v, 17 

��t�,����,�� r�s�  and ��t�,��|t,�� r�s�  depending on the composition of the household or 18 

the type of heating system. Also, these probabilities could be easily derived for the summer 19 
case and, therefore, the framework could be extended to model interactions with the air 20 
conditioning system. 21 
Another limitation of this study is that the calibration is done with the DYD dataset which 22 
contains data from a population able to afford an ecobee thermostat and which can, thus, 23 
be supposed to belong to a high socio-economic class. This also defines the boundaries of 24 
applicability of this model. 25 
Regarding the relationship that we derived between the override rates and the distance 26 
from the setpoint temperature and the time from the start of the DR event, this relationship 27 
is only comfort-based and does not account for any psychological factors (for example 28 
related to economic aspects, such as higher electricity prices during a DR event) that might 29 
affect the reactions of the occupants to the setpoint modulations. Furthermore, the DTS and 30 
DPD models have been derived using experimental data collected in climate chambers. 31 
Thus, they do not account for any form of occupants’ adaptation. For example, it has been 32 
shown that people are much more tolerant than what PPD predicts at the extremes and less 33 
tolerant close to thermal neutrality [84]. 34 
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A further limitation of our model is that it is based on a monozone building model, so 1 
assuming homogenous temperature of the household and a centralised controller. In case 2 
of a decentralised control system, the occupants’ interactions with the heating system 3 
might be different and more heterogeneity in the indoor environment might occur. 4 

6. Conclusions 5 
In this paper, we describe and calibrate a novel agent-based stochastic model of occupants’ 6 
interactions with thermostats in residential buildings in the heating season. The thermal 7 
discomfort predictions of the thermostat adjustment model are based on a two-node 8 
thermo-physiological model coupled with a dynamic thermal perception model. This 9 
represents a novelty with respect to the most often used static PMV-based discomfort 10 
predictions. Furthermore, the adjustment model is built on an activity and presence model 11 
and, therefore, is able to account for the diversity of the activities carried out by different 12 
types of occupants. The empirical foundation of the thermostat adjustments model is 13 
represented by user interaction data from about 9,000 connected Canadian thermostats 14 
included in the Donate Your Data (DYD) dataset, which are also used to calibrate the model. 15 
This represents a further strength of the model since, in most studies, calibration are either 16 
not carried out or are performed over a limited set of empirical data. Finally, we show how 17 
the framework can be used to predict the acceptance/rejection of DR events during 18 
downward setpoint modulations in two case study buildings. By using these simulations we 19 
are able to model occupants’ override rates as a function of both the indoor air temperature 20 
and the time since the start of the DR event. The novel modelling framework is meant to be 21 
used for energy performance simulations at district level. Different types of applications 22 
could be conceivable. For example, the model could be used for developing and testing 23 
different DR signals (in terms of duration, time of the day, temperature drop) and strategies 24 
for energy aggregators. Another possible application could be the quantification of peak 25 
demand and the related uncertainty at different district scales. For now, the model is 26 
embedded within the simulation platform DIMOSIM but, being developed in python, it 27 
could re-adapted in the future within another simulation interface. When such modelling 28 
effort is not possible, it would be still possible to use our simplified time/temperature 29 
relationship for modelling overriding rates. 30 
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