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Abstract 5 

With the increasing share of intermittent renewable energy sources in the energy mix, demand-6 

side flexibility is likely to play a key role in the future. For buildings, flexibility is defined as 7 

the ability to shift their energy consumption away from “peak periods” i.e. high-demand periods 8 

of the electrical network. In France, these episodes occur mainly during the wintertime due to 9 

the significant demand for space heating. To achieve flexibility objectives, we explore an 10 

indirect control strategy at district scale by adjusting the dwelling thermostat during peak 11 

periods. The study is conducted on 337 dwellings in order to better predict the load curve by 12 

taking advantage of the aggregation effect. Three main research questions are addressed in 13 

relation to the assessment of flexibility potential: (i) the effect of aggregation, (ii) the 14 

identification of the most influencing factors, including occupant behavior, and (iii) the 15 

quantification of uncertainties. Using an urban building energy modeling tool populated with 16 

various national data sources (building envelope, energy class of equipment, etc), we perform 17 

a sensitivity analysis on 22 parameters representing the geometry, the appliances, the building 18 

characteristics, the occupants, and the grid. The output indicator is the average power shifted 19 

during the flexibility (or demand response) event. From this analysis, 7 parameters appear as 20 

being the most influential. A regression analysis on these parameters is performed, depending 21 

on both the duration of the event and the typology of the district. The results show that the 22 

duration of the flexibility event and the occupant pre-selected temperature change are the most 23 

influential parameters. It results to approximately ±90 W of uncertainty on an average potential 24 

of 290 W of shiftable power per household in a recent district. Furthermore, the occupants are 25 

highlighted as making a significant contribution to flexibility. Finally, we observed that the 26 

thermal properties investigated with the study of an old fabric district play a key role. Low 27 

thermal performance means high heating consumption and increased flexibility potential, but a 28 

similar relative uncertainty. 29 

Keywords: urban building energy modeling, bottom-up, district, space heating, demand-30 

response, sensitivity analysis, occupant behavior, probabilistic district characterization 31 

1 Introduction 32 

1.1 Research background 33 

Global warming, fuel poverty, and sustainable development are leading to a growing interest in 34 

renewable energy sources, which are often highly intermittent (e.g. solar, wind). As a result, 35 

the power grid becomes less robust. In this context, the grid flexibility is defined as the 36 

capability of the power system to maintain a balance between generation and load. If the 37 

production becomes more intermittent because of an increased share of renewable sources, load 38 

adaptation (flexibility) or storage solutions need to be deployed. Consequently, there is an 39 
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active research field into energy flexibility of the demand. In 2015 Lund et al. [1] have 40 

published a review of the energy system flexibility measures and point out that the use of 41 

dedicated flexibility products such as smart thermostats will become more important with the 42 

integration of renewable energies.  43 

The building is an interesting lever to increase the flexibility of the grid as it represents about 44 

30%-40% of the global energy consumption [2]. Indeed, the electricity share of the world 45 

residential energy consumption is expected to reach 43 % by 2040 (39% in 2012). Moreover, 46 

by 2025, electricity is expected to overtake natural gas as the leading source of 47 

delivered residential energy [3] and space heating is seen as a promising source of flexibility. 48 

The main challenge of using the flexibility of residential buildings is the small amount of power 49 

involved (a few hundred watts) and their controllability. Indeed, the availability of these flexible 50 

loads depends strongly on the preferences and activities of occupants. For an individual 51 

building, it is therefore challenging to predict the flexibility potential. At the district level, the 52 

diversity of uses allows a more reliable response and an increased thermal storage capacity [4]. 53 

In addition, for the residential sector, other challenges such as data scarcity and variability in 54 

the envelope properties exist. 55 

The IEA EBC Annexes 67 and 82 are dedicated to energy flexibility of buildings [5] and 56 

document the growing interest in this topic. Several factors have been identified as influencing 57 

flexibility in the literature [6], but they are usually evaluated for individual buildings. Putting 58 

forward the key role of aggregation, Hu and Xiao [7] recently proposed a quantification of the 59 

flexibility at the district scale with a focus on the role of aggregation.  60 

1.2 Research gaps 61 

When activating energy flexibility in buildings, the aggregation effect has proven to reduce the 62 

uncertainty of the predicted power load. As highlighted by Dickert and Schegner [8] for 63 

residential applications, electric loads are deeply stochastics. The aggregation effect at the 64 

district scale makes the electric load less stochastic than that of a single building, and therefore 65 

easier to predict. De Jaeger et al. [9] observed a reduction from 65 % down to 10 % uncertainty 66 

in the average district energy demand when evaluating a single building compared to 50 67 

buildings. The positive effect of aggregation has also been observed experimentally [10]. With 68 

more than 20 apartments, the prediction of the space heating needs becomes less stochastic. 69 

Therefore, the energy flexibility of buildings becomes interesting at the district scale so that the 70 

Transmission System Operator (TSO) can use this potential.  71 

To evaluate energy flexibility at district scale, an urban building energy model (UBEM) is 72 

required. Different models are available [11–14], most of them being bottom-up physical 73 

models. The main differences between these tools are the thermal models used (thermal zoning 74 

and discretization) as well as the definition of the input parameters, as pointed out by De Jaeger 75 

et al. [15]. Indeed, UBEM require the adjustment of many parameters, which can be poorly 76 

known and stochastic. These parameters are related to the building properties (geometry, 77 

envelope, systems) and to the occupants (activities, user-related equipment). Therefore, the 78 

correct characterization of these input parameters and their diversity is a challenge. Probabilistic 79 

characterization can be used for this purpose [19]. Moreover, there is lack of validation of these 80 

tools, especially in the ability to simulate energy flexibility at small, aggregated level (≈100-81 

500 dwellings).  82 

To assess the robustness of the results obtained from UBEM, the quantification of uncertainties 83 

is necessary. This can be done with a sensitivity analysis (SA). Among the sensitivity analysis 84 
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techniques, the Morris method has proven its reliability and effectiveness in the building sector. 85 

A detailed presentation of the Morris SA method for optical application is given in [16]. In 86 

building applications at district scale, De Jaeger et al. [9] evaluated the influence of envelope 87 

losses on district energy demand. The average nighttime set point temperature was the main 88 

occupant-related parameter influencing the district energy demand. For a single residential 89 

building, Vivan et al. [17] observed that the level of insulation in summer and the time of the 90 

demand response (DR) event in winter were the most influential parameters.  91 

The accurate estimation of the potential can increase the stakeholders participation in energy 92 

flexibility [18]. To correctly estimate the flexibility potential at district scale, it is necessary to 93 

identify and quantify the uncertainties arising from both building and occupant parameters. In 94 

this context, it is particularly important to model the influence of occupants, as they can greatly 95 

alter the flexibility potential. In other words, a sensitivity study highlights the main drivers of 96 

flexibility at district scale and can be useful in performing a flexibility audit. However, this has 97 

not yet been done to the best of our knowledge, due to the challenging aspects of modelling the 98 

stochastic behavior of the occupants.  99 

1.3 Research objectives 100 

This paper proposes a methodology to evaluate the uncertainty on the shiftable heating load 101 

when activating a group of buildings using heat pump systems. Facing these challenges, a 102 

probabilistic characterization methodology with a district database is proposed in this study. 103 

Different set point changes (duration and intensity) will be sent to the dwellings, in which the 104 

energy use for space heating will be modulated according to the constraints and flexibility 105 

tolerances of the users. The stochastic thermostat adjustment behavior of the occupants will be 106 

modelled with an agent-based approach. The influence of the input parameters on the flexibility 107 

potential will then be evaluated. The results of this study can be used for different purposes: 108 

quantifying the uncertainties for control, listing input parameters for a flexibility audit, 109 

evaluating the optimal scale of aggregation, providing guidelines on signal design to increase 110 

reliability, etc. 111 

To illustrate this methodology, the case study of the Atlantech district (La Rochelle, France) is 112 

considered with two levels of building performance (part 2). From this district, an urban 113 

building energy model (DIMOSIM) is used to simulate the consumption of buildings (part 3). 114 

Finally, a SA using the Morris method and a regression analysis are presented (part 4 and 5). 115 

2 Case study 116 

2.1 District characteristics 117 

The district studied is located in the north of La Rochelle city (latitude 46°2’ North, longitude 118 

1°1’ West, France) in a temperate oceanic climate. The city is mainly composed of low-rise 119 

residential multi-storey buildings. The district is composed of 98 buildings divided into 337 120 

dwellings. The weather data file corresponds to the year 2017, classified as typical for future 121 

weather conditions, which represent 1904 heating degree days (base 21 °C). This district is 122 

mainly composed of couples (with or without children). The dwelling floor area varies from 45 123 

up to 110 m², with an average size of 65 m².  124 
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 125 

Figure 1: Atlantech district case study. Urbanization database comes from [20] 126 

Two levels of building performance are considered in this study to assess the influence of the 127 

construction period on energy flexibility:  128 

� the new district (mean consumption for heating of 12 kWh/m².year): the envelope 129 

and system properties are defined in accordance with the current French building 130 

regulation (2012). Space heating is provided by heat pumps and water-based 131 

radiators; 132 

� the old fabric district (mean consumption for heating of 100 kWh/m².year): the 133 

building properties are defined according to the typical characteristics of multi-134 

storey residential buildings from the period 1982-1989, including renovations. 135 

Space heating is provided by direct electric convectors. 136 

In both cases, national databases are used to define the buildings properties (see Annex). 137 

2.2 Flexibility signal 138 

Flexibility is activated every day over the same period, by an economic incentive such as a 139 

time-of-use tariff. This strategy was selected as it is relatively inexpensive to implement with 140 

smart meters or centralized thermostats. Moreover, it ensures the privacy of the occupants. The 141 

French TSO (2017) provides the peak hour distribution. Peak hours mainly occur in the late 142 

afternoon (Figure 2), when everybody gets back home. Based on this observation, a price signal 143 

is built with a starting time set to 6 pm and a duration from 0.5 up to 3 hours. 144 
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 145 

Figure 2 : Daily repartition of the 39 peak hours recorded in France for January 2017; the DR event 146 

period considered in this study is highlighted in red 147 

2.3 Flexibility activation in buildings 148 

Once the flexibility signal is sent to the buildings, it needs to be interpreted at the equipment 149 

level. To model this flexibility, we based our approach on existing technologies, such as smart 150 

thermostats with DR applications [21,22]. The main advantage of this technology is that little 151 

extra investment is required, and it ensures the privacy and controllability by users. 152 

The flexibility on space heating is activated semi-automatically by the thermostat of the 153 

dwelling, according to the preferences of the occupants (i.e. the pre-set tolerated temperature 154 

decrease, ΔT). When activated for flexibility, the dwelling set point decreases during the peak 155 

period, even if it is unoccupied (Figure 3). In addition, the occupants can interact with the DR 156 

signal using the thermostat and modify the set point according to their thermal comfort, which 157 

will be discussed in more detail (Section 3.3.2). 158 

 159 
Figure 3: Example of temperature set point in a dwelling (comfort set point of 21°C, setback activated 160 

at night and for when not at home and tolerance towards flexibility set at -2°C) 161 

3 Modeling energy flexibility at district scale 162 

The UBEM tool is developed using a bottom-up approach to simulate the thermal and electric 163 

load of the residential district. The simulation platform used is a Python-based model 164 

(DIMOSIM) developed by CSTB [23–25]. In order to optimize the computation time while 165 

affecting the calculation accuracy as little as possible, the recommendations proposed by 166 

Frayssinet [26] were followed such as a detailed envelope description to model the heat 167 

conduction in walls, a model for the internal mass in order to consider internal inertia of 168 
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dwellings, a detailed calculation of solar masks to estimate solar gains. The simulation time-169 

step is set to 10 minutes. 170 

Figure 4 provides an overview of the model. The UBEM tools require usually a large amount 171 

of information [27], more than 15 000 inputs were filled in for this study. Among the different 172 

databases listed (in blue on Figure 4) a selection is made according to the case study in order to 173 

obtain a representative dataset. From this selection, preprocessing is performed to convert the 174 

data into usable inputs for building energy models, some of them being represented in Figure 175 

5. When possible, these inputs are added to the UBEM as normal distributions, where the mean 176 

(µ) and standard deviation (σ) are computed from databases (see Annex). In general, normal 177 

distributions appeared as being well representative of the inputs variability observed in the 178 

database. For distributions that do not follow a normal distribution, see for example the number 179 

of occupants in each dwelling in Figure 5b, a random selection of inputs is performed. In Figure 180 

5, the bins represents the discrete sampling of the distributions, while the lines represent the 181 

kernel density estimate of the distribution [28]. 182 

The geometry of the district is taken from the land register and the glazing ratio is set according 183 

to the orientation of the dwelling. The weather file is used to compute the solar gains and 184 

represents the boundary conditions for the heat transfer model. The occupant’s characteristics, 185 

professional categories, and occupancy rates are given as input to the UBEM. Finally, the usage 186 

habits of the appliances, which influence the electrical load and the internal gains are defined 187 

for each dwelling. A random process generates diversity in the set of input variables. 188 

 189 

Figure 4 : Overview of the modelling process 190 
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 191 

Figure 5: Examples of input distributions for the new district model for floor area (a), number of 192 
occupants (b), glazed area ratio (c), wall heat loss coefficient (d), heat pump coefficient of 193 

performance (e), ventilation air change rate (f), set point temperature (g) and energy class of systems 194 

(h) 195 

3.1 Geometry 196 

The footprint and height of buildings are defined with a land register at LOD1 level of detail. 197 

Then, the buildings are split into dwellings assuming a floor height of three meters. Each 198 

dwelling is modeled as a single thermal zone, which is acceptable due to the small temperature 199 

differences expected between the different rooms [29]. Indeed, the dwellings are characterized 200 

by a small volume, a single set point temperature and an inter-zonal ventilation flow rate. The 201 

geometry of the district is also used to evaluate solar heat gains, taking into account shading 202 

between buildings and openings.  203 

3.2 Buildings 204 

For each building, the composition of the exterior and interior walls, the windows, the floor, 205 

and the roof is defined according to the current building regulation [30] or the energy audit 206 

database [31]. The databases are analyzed in order to obtain a mean value (µ) and a standard 207 

deviation (σ) for the distribution of each parameter.  208 

Space heating is provided by air/water heat pumps for the new district and by electric convectors 209 

for the old fabric district. Air-to-water heat pumps are variable speed. The coefficient of 210 

performance (COP) of the heat pumps is based on a polynomial regression from the nominal 211 

COP to estimate the thermal power output as a function of the temperature difference between 212 

the sink (i.e. the building) and the source (i.e. ambient air temperature). Such a technique, 213 

illustrated in [32], has been adapted in the model. The sizing of the heating systems is carried 214 

out with an oversizing coefficient of 20 % and the supply water temperature is set to 45°C for 215 

the heat pump systems.  216 
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Ventilation and infiltration are set according to measurements performed in French households 217 

[33]. It is assumed that the dwellings are equipped with mechanical ventilation, humidity-218 

controlled in the case of the new district and constant for the old fabric district. Infiltration is 219 

modeled as a constant airflow system, based on n50 measurements.  220 

3.3 Occupants  221 

This section describes the main elements of the occupant model: household composition and  222 

professional category (3.3.1), occupant activity and presence (3.3.2) and household set point 223 

schedule (3.3.3). These models have been introduced, validated, and used in our previous works 224 

[34–36]. 225 

3.3.1 Household composition and professional category 226 

We first assign a composition to each dwelling by sampling with replacement from the 227 

conditional distribution of the household composition conditioned on the usable floor area of 228 

the dwelling. These conditional distributions are derived using the summary tables from the 229 

INSEE 2015 population census data [37]. The original INSEE household composition 230 

categories are simplified using 11 main categories (single adult living alone, single adult with 231 

(1,2,3,4) children, couple without children, couple with (1,2,3,4) children, other type). 232 

The professional category (employed, unemployed, student or retired) based on the household 233 

reference person is assigned by sampling with replacement from the conditional distribution of 234 

the professional category conditioned on the household composition. The status of any other 235 

member of the household is assigned based on additional summary tables dedicated to families. 236 

Children are assumed to be students. 237 

3.3.2 Occupant activity and presence 238 

To model occupants’ activity and presence, we retain the activity sequences or activity profiles 239 

available from the French Time Use Survey (TUS) data (2009-2010 TUS campaign) [38]. 240 

About 27,900 daily logbooks are used to build the model. These daily times series are clustered 241 

according to the professional category of occupants (employee, retired, student, etc) and the 242 

type of day (weekend vs. weekday). These two parameters have been selected out of eight 243 

independent descriptors as they were identified as influencing the most the activities of 244 

occupants [34]. Based on the assumption that most human behaviors are characterized by daily 245 

routines, a hierarchical agglomerate clustering is performed within each group to find clusters 246 

of similar daily profiles. This clustering used the Jaccard distance as metric and Ward’s linkage 247 

criterion to group similar schedules, while the number of clusters was identified through the 248 

elbow method.  249 

To implement the occupants’ activity time series in the UBEM, a stochastic procedure is applied 250 

to create different yearly activity patterns by randomly drawing daily schedules within the 251 

cluster corresponding to the professional category of occupant and type of day simulated. The 252 

outputs of this model are the activities and presence for each occupant of the household. 253 

Compared to probabilistic approaches, this method directly uses actual TUS activity sequences 254 

and, therefore, allows accounting for the diversity of the real population in terms of occupancy 255 

and domestic activities [39].  256 

The activity time series are then converted into time series of metabolic heat rate by using 257 

distributions obtained from the ASHRAE reference tables of metabolic rates for common 258 

activities [40]. The estimated metabolic heat associated with the occupant’s activity is, in turn, 259 
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an input of the dynamic thermal comfort model. While the status of the occupant (at home, at 260 

home sleeping, not at home) is an input of the thermostat adjustment model. 261 

3.3.3 Set point schedule 262 

In our occupant modeling approach, we assume that each household is equipped with a 263 

programmable thermostat (see Section 2.3), which can be used to set a schedule for: 264 

� Tsetpoint, day : the day set point temperature when somebody who is not sleeping is at home; 265 

� Tsetpoint, night: the night set point temperature when everybody who is at home is sleeping; 266 

� Tsetback: the setback temperature when nobody is at home. 267 

For each household, the schedule is estimated based on the occupants’ activity and presence 268 

profile time series by calculating the hourly probability of having each household’s status (at 269 

home, at home sleeping, not at home) over the simulated period. For each hour of the day and 270 

depending on the activity of the occupant, the status with the highest probability of occurring 271 

defines the corresponding hourly scheduled/default temperature for the household. This hourly 272 

profile is repeated for each day (Figure 3). Thus, the hourly set point schedule is defined for 273 

each household in a pre-process with respect to the dynamic thermal simulation, while the 274 

manual thermostat adjustment behavior is dynamically simulated. 275 

Defining an operation schedule does not necessarily imply that each household is using a night 276 

set point temperature or a setback temperature. The probability of using either a night set point 277 

temperature or a setback temperature is equal to 80 % based on the PHEBUS dataset [41]. The 278 

Tsetpoint, day distribution is also based on the PHEBUS dataset (Figure 5). Each occupant adapts 279 

its default clothing level based on the Tsetpoint, day in order to obtain a neutral PMV value. The 280 

default clothing insulation and the default set point temperature can then be modified by the 281 

occupants over the course of the dynamic simulation (see 3.5).  282 

3.4 Appliances 283 

The appliances are randomly allocated to the households based on the appliances’ ownership 284 

rate conditioned on the household size and the professional category and calculated using 285 

aggregated data from the PHEBUS dataset [41]. As the conditional distributions were not 286 

available, the capacity and energy class of the appliances cannot be conditioned on the 287 

household size and the professional category. The marginal distributions of the capacity of the 288 

appliances were available from the ADEME survey campaign [44]. The marginal distributions 289 

of the energy class of the appliances were built from the marginal distributions of the age of the 290 

appliances combined with sales data [49]. 291 

The appliances’ electricity load curves are randomly assigned to the activity starting times 292 

based on the capacity and the selected energy class of the equipment (ranging from A+++ to 293 

C). In total, 1200 load curves are built based on the EU labeling scheme for electronic devices. 294 

The electrical load is then converted into internal heat gains according to emission factors. In 295 

total, approximately 85 % of the electricity used by appliances is converted into internal heat 296 

gains, which is in accordance with [42]. 297 

3.5 Modeling flexibility from occupants 298 

Occupant thermostat adjustments can occur because of rejection of DR events, change of 299 

metabolic rate, or thermal discomfort due to mismatch between schedule and presence (Figure 300 
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6). The thermostat adjustment behavior is modeled using an agent-based approach: each 301 

member of the household is represented as an agent with a set of attributes (status, clothing, and 302 

metabolic rate) and a set of possible adaptive actions (set point and clothing adjustment). User 303 

interaction data from about 9,000 connected Canadian thermostats included in the Donate Your 304 

Data (DYD) dataset [43] are used to calibrate the thermostat adjustments model [21]. 305 

 306 

Figure 6 : Overview of the modelling framework for thermostat interactions.  307 

The adaptive principle [44] is assumed to be determining the manual overriding behavior. For 308 

modeling the agent’s adaptive behavior, we use a particular type of agent: the Belief-Desire-309 

Intention (BDI) agent [45]. In this study, environmental and personal conditions form the 310 

agent’s thermal dissatisfaction, which is represented by the Dynamic Thermal Sensation (DTS) 311 

and Dynamic Percentage of Dissatisfied (DPD). DTS and DPD	predictions are based on a 312 

thermo-physiological model coupled with a dynamic thermal perception model [35]. This 313 

dynamic evaluation of thermal comfort appears necessary given the short timescale associated 314 

with demand response events. 315 

Then, the agent translates its thermal dissatisfaction into a desire about what to achieve. This 316 

action is predicted using a time-dependent Bernoulli process. A uniformly distributed random 317 

number (n) in [0,1[ is compared to the DPD. If the DPD is higher than n, the outcome is to 318 

change its current state. The agent’s intention is defined by the probabilities of adjusting during 319 

a 2-min time interval (using a time-dependent Bernoulli process): 320 

1- the clothing padj, clothing (before), with a mean value of 10.5 % and an observed range of 321 

3-18% based on the calibration with the DYD dataset,  322 

2- the set point temperature padj, SP (afterward), with a mean value of 3.5 % and an observed 323 

range of 1-6%. 324 

Thus, it is assumed that the adjustment of the clothing insulation is the preferred adaptation 325 

strategy.  326 

When the agent decides to adjust its clothing, he does it by either increasing or decreasing the 327 

clothing of ΔCLO = 0.1 clo where 0.1 clo is, for example, the clothing insulation change made 328 
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when passing from a thin long-sleeved sweater to a thick long-sleeved sweater [46]. While, 329 

when the occupant decides to adjust the set point of ΔTsetpoint, he does it to restore thermal 330 

neutrality (i.e. towards a PMV ~ 0). The Tsetpoint+ ΔTsetpoint has a lower limit equal to Tsetpoint,day 331 

-1°C during warm exposures and an upper limit equal to Tsetpoint,day +6°C during cold exposures, 332 

based on observations of the DYD dataset. 333 

3.6 Thermal/electrical models 334 

The building thermal model is a detailed physic-based RC model [23]. The elements of the 335 

dwelling are discretized into exterior walls, windows (divided per orientation), interior walls, 336 

floor, and roof. The opaque walls are discretized in four layers, namely the external finish, the 337 

thermal mass, the insulation, and the interior finish, which leads to more than 20 capacities for 338 

each thermal zone. The conduction through the walls is then solved by the finite difference 339 

method, with a time-step of 10 minutes. 340 

The electrical load of the buildings is calculated from the space heating and the equipment 341 

consumption on a 10-minute time-step. 342 

3.7 Qualitative validation of the model  343 

Validating the results of UBEM tools is a challenging task due to the lack of standardized data, 344 

the lack of information and the complexity of the tools. Comparison with measured data cannot 345 

be performed because only half of the Atlantech district has been built to date. Therefore, the 346 

model validation focused on the thermal model, the input parameters, and the simulation results 347 

with external references.  348 

The thermal model of the DIMOSIM tool was compared with the results of the benchmark tests 349 

BESTEST [47] (free-running and heating cases) and DESTEST [48]. DIMOSIM shows good 350 

agreement with the other tools, both in terms of temperature and energy.  351 

Given the large number of input parameters required for the design of the district (around 352 

15 000 for this district), the control of these parameters with typical values is of main 353 

importance. The heat loss coefficient (HLC) of each dwelling was compared to ensure the 354 

overall performance of the district. Additionally, each energy usage was also checked.  355 

Figure 7a represents the average daily electrical load profiles of the devices within the district. 356 

The average daily profile was compared with the results of Vorger [49]. Vorger’s results, also 357 

based on a bottom-up model, correspond to the mean power of 100 dwellings randomly 358 

selected. The differences observed can be partly explained by the better energy classes selected 359 

for the electrical appliances, especially for the fridge. Moreover, Vorger’s results are focused 360 

on a French representative set of buildings that includes single-family houses equipped with 361 

more electrical devices than dwellings. The simulated annual electricity consumption of the 362 

appliances (27 kWh/m²heated area.year) corresponds to the mean value measured in French 363 

collective buildings [42]. Additionally, the coincidence factor was assessed to verify the 364 

diversity of uses within the district (Figure 7b). This factor is equal to the peak load of a district 365 

divided by the sum of the peak loads of its individual buildings. These values are compared to 366 

the relationship proposed by Velander (1947) for the energy consumption of appliances with 367 

electrical heating. The diversity of uses appears to be consistent within the district, slightly 368 

below the values proposed by Velander. Similar observations were made by Sørensen et al. 369 

[50], in which the measured peak power was about 20% lower than Velander’s formula (for 370 

1000 apartments). The resulting heating consumption of the new district is equal to 12 371 
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kWh/m²heated area.year with a relatively large standard deviation between dwellings. Despite 372 

similar thermal properties, not all buildings can benefit from passive solar heat gains within the 373 

district.  374 

 375 
Figure 7: Average electrical load per household from appliances, heating excluded (a)  376 

and coincidence factor, heating included (b). 377 

3.8 Examples of load curves  378 

The time series representation of the UBEM output is presented (Figure 8) for the district and 379 

for three cold days of the winter (20th to 23rd of January). The DR event occurs between 6 and 380 

9 PM, during which the set point is lowered in each dwelling with a different amplitude. The 381 

results presented are the average values of operative temperature and heat-pump electrical load 382 

for the district. The upper graph presents the average set point, the 0.95 and 0.05 quantile of the 383 

operative temperature distribution and the average operative temperature of the dwellings, 384 

while the lower graph represents the average electrical load of the heat pumps. 385 

During the day, there is a significant gap (about 2 °C) between the average operating 386 

temperature and the set point. This can be explained by the fact that the set point is reduced 387 

during unoccupied periods (15 °C of set point when dwellings are unoccupied), while inertia 388 

and solar gains have the effect of maintaining the operative temperature. During the flexibility 389 

event, the thermal inertia of the housing explains the gap between the set point temperature and 390 

the operative temperature. 391 

 392 

Figure 8: Overview of the time series collected as the output of the UBEM during 3 days of January 393 

a. b. 



13 

 

 

4 Methods 394 

4.1 Indicator to characterize flexibility 395 

The most common indicators found in the literature to characterize the flexibility are the amount 396 

of power change, duration of the change, rate of change, response time, shifted load and 397 

maximal hours of load advance [1,51,52]. Based on the previous works, we have decided to 398 

consider the mean power shifted away from a peak period to assess flexibility at the district 399 

scale. Since most peak hours occurs during the winter, we decided to focus on January, which 400 

was the coldest month of the year 2017. The average shifted power during a peak period is 401 

given by: 402 

P������	 
 � �P���,	��t� � P����,	��t�
N	� 	 ∙ N����	����� 	

	�����	�����
 (2) 

Where Pref, dw is the heat pump electric load (in W) during peak hours for the reference case, i.e. 403 

without DR event, Pflex, dw the heat pump electric load (in W) during the DR event, Npeak, hours 404 

the number of peak hours during January and Ndw the number of dwellings (dw). 405 

To illustrate the calculation of the indicator, we show the evolution of the district-averaged heat 406 

pumps power for both reference and flexibility cases (Figure 9). The simulation focuses on the 407 

average electrical power of air-to-water heat pumps in the 337 dwellings of the district. The 408 

long-lasting rebound effect can be observed. It is useful to recall that, in our model, the 409 

occupants adjust the set point temperature during peak hours in case of thermal discomfort.  410 

 411 

Figure 9 : Example of a response of the mean electrical power of the heat pumps, new district case-412 

study  413 
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The aggregation effect on the electrical load prediction is highlighted in Figure 10. The 414 

indicator was calculated from 1 to 674 dwellings to evaluate the effect of the district diversity 415 

(both from buildings and occupants). From Figure 10, we observe that the increase in the 416 

number of dwellings reduces the uncertainty in the calculation of the indicator. In green, the 417 

average error, defined as the ratio of distance between the maximum and the minimum value of 418 

Pshifted to the mean Pshifted value, is represented. 337 dwellings appear sufficient to obtain a robust 419 

calculation (10% error). The uncertainty in the value of Pshifted, depending on the number of 420 

dwellings, follows a Student’s t-distribution with a 95 % confidence interval that is 421 

representative of a random behavior in the sample. According to the t-student distribution 422 

results, a district of 500 dwellings is needed to estimate the Pshifted indicator with an error of 5%. 423 

Wang et al.  [53] found that 700 dwellings were necessary to decrease uncertainty under 10 %.  424 

These differences can be explained by several facts: (i) in Wang’s study the shiftable power is 425 

not averaged over the entire DR event and (ii) the flexibility is only activated during unoccupied 426 

hours leading to a reduced number of considered households, (iii) in our study the period of 427 

activation of flexibility starts at 6 PM, which is a time when the probability of dwellings being 428 

unoccupied is low. 429 

 430 

Figure 10: Aggregation effect on the mean shifted power calculation, minimum (blue), maximum (red) 431 

values and average error (green)  432 

4.2 Identification of the most influential parameters: the Morris method 433 

The method of Morris [54] consists of segmenting the model inputs within their range of 434 

variation. Thus, this segmentation generates a unit hypercube of input variables that will be 435 

used in the model to evaluate the change in the output for each parameter variation. The 436 

sensitivity measured at each point (elementary effect) can be defined by the ratio between the 437 

output and the input displacement. For a user-defined number of trajectories, the Morris method 438 

evaluates the mean and the standard deviation of the elementary effect. For this study, the input 439 

parameters are assumed to have a uniform distribution. For the 22 selected parameters 440 

concerning buildings characteristics, occupant and appliances, the mean values (µ) of the 441 

distribution are changed and their impacts on the flexibility potential is assessed. The output 442 

considered is the flexibility potential (see 4.1). 443 

This screening method has been widely used and described in the literature [55–57] including 444 

for building applications [58]. The method of Morris method appears as a robust and time-445 

efficient method. For these reasons, it was selected for this study. 446 

To process a Morris sensitivity analysis, it is necessary to:  447 
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� define a set of relevant parameters; 448 

� determine their range of variation; 449 

� select an indicator that is well suited to the phenomenon under study. 450 

The originality of this sensitivity analysis comes from the fact that the inputs are not 451 

deterministic values but normal distributions. Figure 11 provides an overview of the method 452 

used.  453 

 454 

Figure 11 : Overview of the methodology, from input definition to analysis of the results 455 

In Figure 11, EE represents the elementary effect, ΔYi,k is the output difference for the k 456 

parameter at the i-th trajectory defined as f(Xi+Δx)-f(Xi) where f represents the UBEM model, 457 

ΔXi,k is the grid step of parameter k, for the i-th trajectory. 458 

To determine the most influential parameters, we conducted a 100-trajectories and 4-grid jump 459 

test with the parameters listed in Table 1. The grid jump is the number of samples into which 460 

each parameter is divided. The convergence of the results was checked and found to be well 461 

suited for the identification of the influential input parameters.  462 

In Table 1, the parameters (i) are well defined and the determination of (µ, σ) was done by 463 

database analysis (part 3 and Annex 1). The mean of the input is changed between µ-Δµ and 464 

µ+Δµ based on the standard error of the mean (Δµ=2×σ/√n, with n=98 buildings). Diversity in 465 

the district will be provided by the standard deviation (σ) of the distribution, which remains 466 

unchanged. The parameters (ii) are derived from a limited set of data, therefore, for these 467 
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parameters we have defined a 10 % uncertainty on the mean, or an ad hoc value of this 468 

uncertainty. The parameters (iii) are set equally for all the dwellings of the district. 469 

In addition to the parameters presented in Table 1, the influence of the building and occupants’ 470 

diversity and stochasticity was evaluated. In the UBEM tool, these random processes are 471 

characterized by two parameters:  472 

1. the random characteristics parameter (randomcharacteristics), which influences the selection 473 

of occupant and building properties. It allows the district to be populated with a diversity 474 

of occupant and building characteristics; 475 

2. the random occupant behavior (randomoccupant), which influences the sequencing of the 476 

occupant behavior model (presence, activities and thermostat adjustments). It allows to 477 

simulate the stochasticity of occupant behavior.  478 

Table 1 : Parameters of the sensitivity analysis, mean value, standard deviation, and range of 479 

variation (“-“ means that no variation among buildings was defined) 480 

 Name Description µ σ SA bounds 

[µ-Δµ; µ+Δµ] 

unit 

Geometry glazedRatio Average glazed ratio of the dwelling 13.5 3 [13, 14] % 

Buildings 

Uwall Heat loss coefficient of the walls 0.22 0.035 [0.21, 0.23] W/(m²K) 

Uwindow Heat loss coefficient of the windows 1.23 0.16 [1.2, 1.26] W/(m²K) 

Ufloor Heat loss coefficient of the floor 0.2 0.055 [0.19, 0.21] W/(m²K) 

Uroof Heat loss coefficient of the roof 0.13 0.042 [0.12, 0.14] W/(m²K) 

Qventil Air change rate (ventilation & infiltration) 0.55 0.15 [0.49, 0.61] vol/h 

massthickness Equivalent thickness of the concrete core to 

model the inner mass 
0.1 - [0.05, 0.15] m 

COP COP of the air/water heat pump 3.33 0.81 [3.17, 3.49] - 

Appliances 

cooktop Energy class of the cooktop 5.1 0.8 [4.94, 5.26] - 

tumbledryer Energy class of the tumble dryer 5.15 0.72 [4.98, 5.28] - 

dishwasher Energy class of the dishwasher 3.12 1.13 [2.9, 3.36] - 

fridge Energy class of the fridge 3.52 0.94 [3.33, 3.71] - 

oven Energy class of the oven 5.11 0.8 [4.99, 5.31] - 

washingmachine Energy class of the washing machine 2.75 1.24 [2.51, 2.99] - 

Occupant 

setpoint Average heating set point (day) of the building 19.83 1.26 [19.58, 20.08] °C 

setback Probability of a dwelling to decrease its set point 

when unoccupied and sleeping 
80 10 [72, 88] % 

ΔT Pre-set set point difference during a flexible 

event 
1.5 0.5 [1, 2] °C 

padjSP Probability for occupant to adjust their set point 

due to discomfort 
3,5 - [1, 6] % 

padjclothing Probability for occupant to adjust their clothing 

due to discomfort 
10,5 - [3, 18] % 

presence Probability of occupancy of the dwellings 100 - [80, 100] % 

Grid durationEvent Duration of the flexibility event 105 - [30, 180] min 

 481 

4.3 A better understanding of the uncertainty of parameters: the regression 482 

analysis 483 

For the most influential parameters identified by the SA, another computation is made by 484 

modifying “step by step” the parameter, holding other factors constant, and performing a linear 485 

regression analysis of the flexibility potential indicator (Pshifted). The impact of the parameter is 486 

quantified using the following three indicators: 487 

(i) 

(ii) 

(iii) 

(iii) 
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� The mean value of the Pshifted, represents the average value of the flexibility potential for 488 

each parameter tested;  489 

� The range of variation (Δ) between the maximum and minimum value of the flexibility 490 

potential (Pshifted) gives an idea of the variability of the parameter; 491 

� The R2 coefficient calculation indicates the predictability of the impact of this parameter 492 

on the flexibility potential of the district. 493 

5 Results 494 

We first identify the parameters influencing the most the flexibility of the new district (part 495 

5.1). We will later study the performances of a typical old fabric district (part 5.2). 496 

5.1 New district 497 

5.1.1 Morris screening method 498 

Figure 12 presents the results of the sensitivity analysis for the new typical district. The Figures 499 

represent the SA-mapping of the parameter and the µ* distribution. Most of the investigated 500 

parameters are considered as little dependent on each other because they are below σ/µ* = 1 501 

[54]. Moreover, the limited number of trajectories explain some high values (i.e. in the order of 502 

magnitude of the mean effect) of the standard deviation of the parameters. However, we 503 

consider these results robust enough in order to detect the most influential parameters.  504 

With regard to the random parameters, it appears that a Morris sensitivity analysis is not suitable 505 

to explore their influence. Thus, we decided to explore these elements separately in Section 506 

5.1.2. 507 

 508 
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 509 

Figure 12: Sensitivity analysis, σ-µ* plot and µ* distribution for the average shifted electrical power 510 

of the district during the month of January  – Pshifted avg = 290 W 511 

The average flexibility potential (Pshifted) was calculated at 290 W. It appears that the duration 512 

event (durationEvent) and the set point decrease during the flex event (ΔT) are the key 513 

parameters of the study as its µ* value (80 W) represents approximately 30 % of the average 514 

flexibility potential. Therefore, these two parameters need to be known by the 515 

aggregator/district manager to evaluate correctly the flexibility potential. 516 

An illustration of the importance of the duration of the event on the flexibility potential is 517 

presented below. On Figure 13, the increase in the electrical load after the shutdown of the heat 518 

pumps (especially for the long modulation) indicates that some households have reached their 519 

lower set point. Moreover, the longer the flexibility event, the more likely the operative 520 

temperature in the dwelling will decrease below a comfort temperature, so an adjustment in the 521 

set point from occupant will occur to increase the indoor temperature. 522 
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 523 

Figure 13 : Effect of the event duration on the average operative temperature and the average heat 524 

pump consumption 525 

Thus, we observe that the event duration indicator can modify the influence of other parameters. 526 

Figure 14 shows the combined effect of durationEvent and ΔT. For a short modulation, we 527 

detect that Pshifted is higher compared to a long modulation as the operative temperature is less 528 

likely to reach the lower set point due to thermal inertia. Thus, no matter how low the set point 529 

temperature is, the heating system will stop. Consequently, the flexibility potential will be less 530 

dependent on the temperature difference (lower slope of the regression line). 531 

 532 

Figure 14 : Influence of the set point decrease and duration of the DR event on the flexibility potential. 533 

The third most influential parameter is the efficiency of the electrical to heat conversion of the 534 

heatpump system (cop, µ* = 30 W). Then, the probability of thermostat adjustment (padjSP) is 535 

observed to be influential (µ* = 20 W). The ventilation rate (Qventil) plays also an important 536 

role in the flexibility potential evaluation as it represents a non-negligible part of the thermal 537 

losses in these well-insulated buildings. For similar reasons, the massThickness influences the 538 

Pshifted value as it represents the thermal inertia of the housing partitions. Finally, the probability 539 

of clothing adjustment (padjclothing) is observed as being important. This parameter, and also 540 

padjSP, are related to the behavior of the occupants. An increase in the probability of thermostat 541 

adjustment leads to an increase in the probability of rejection of the flexibility event, and thus 542 

a decrease in the flexibility potential of the neighborhood. Conversely, an increase in the 543 
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likelihood of thermal comfort adjustment through clothing changes will decrease the number 544 

of rejections, and thus increase the flexibility potential. The 7 coloured parameters (Figure 12) 545 

were defined as the most important parameters. 546 

The low influence of the setpoint in the sensitivity analysis results should be taken with caution. 547 

Despite a mean district setpoint relatively well-known at this aggregated scale (±0.25°C), other 548 

thermostat-related parameters show an influence on flexibility (e.g. padjSP, presence and 549 

setback). Moreover, some combined effects can be observed: a low set point will, for example, 550 

change the effect of the ΔT due to a limit in the clothing insulation. Therefore, it is important to 551 

remember that the setpoint controls the heating consumption and therefore plays an important 552 

role in assessing the potential for flexibility. 553 

 554 

5.1.2 Uncertainty estimation based on regression analysis 555 

For each of these 7 parameters and the 2 random parameters, the coefficient of determination 556 

(R2), the mean value (mean) and the range of variation (Δ) of the shifted power are presented 557 

in Figure 15 (180-minute DR event) and in Figure 16 (30-minute DR event) for the bounds 558 

defined in Table 1. In both cases, relatively high values of R2 parameter are observed for ΔT, 559 

Qventil, cop, massThickness, padjSP and padjclothing, demonstrating a correlation between the 560 

variation of these parameters and the shifted power.  561 

The results confirm the Morris analysis performed previously. We observe that the potential of 562 

flexibility is greater in the case of short-term modulation (+ 90 W approximately). For both 563 

tests, the set point decrease is also the main source of uncertainty in the district flexibility (Δ = 564 

100 W for the 180 min DR event, 74 W for the 30 min DR event).  565 

Parameters related to the type of occupant (padjclothing, padjSP, randomcharac and randomocc) and 566 

to the system efficiency (cop) are found to play a role but to a lesser extent (10-30 W). The 567 

efficiency of the system plays a similar role (approximately 20 W of uncertainty) than occupant-568 

related parameters. Finally, the massThickness and the Qventil, considered as building and 569 

envelope related parameter represents about 20 W of uncertainty. 570 

By comparing the results for the two durations of DR events, the interaction of occupants with 571 

the thermostat is discussed. For a 30-min DR event, we observe that an increase of padjSP 572 

increases the flexibility potential. This result may look unexpected, because this parameter 573 

seems to be related to the possibility of rejecting flexibility, so increasing padjSP should reduce 574 

the flexibility potential. However, with the increase of padjSP, the set temperature of residential 575 

area will also increase, especially during cold days. In fact, in cold and uncomfortable 576 

conditions, inhabitants are more likely to raise the set temperature. Therefore, when padjSP 577 

increases, the heating power consumption in the area will also increase. This trend is easily 578 

observable in Figure 17b, where a set point difference of up to 1°C is observed between the 579 

minimum and maximum values of padjSP. This set point gap due to cold discomfort is therefore 580 

maximum for the simulated period (January, coldest month of the year). Simulations made over 581 

warmer periods have shown less important set point deviations. 582 

Finally, due to the short duration of the event, the temperature of residential areas usually does 583 

not reach its low set value, so the resident rejection is rarely observed. Therefore, in the case of 584 

demand-response event of 30 min, the increase of padjSP implies the increase of flexibility 585 

potential. In the case of 180 minutes, the lower set point is more likely to be reached, 586 

consequently the potential for flexibility was found to decrease with the increase of padjSP. 587 
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 588 

 589 

 590 

Figure 15 : Regression analysis for the most influential parameters on flexibility potential during the 591 

month of January (durationEvent = 180 minutes). 592 
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 593 

Figure 16 : Regression analysis for the most influential parameters on flexibility potential during the 594 

month of January (durationEvent = 30 minutes). 595 

Figure 17 highlights the effect of the adjustment of the clothing insulation and the set point by 596 

the occupants on the flexibility potential. Figure 17a shows the variation of the district average 597 

heating need, set point and clothes of the neighborhood residents for a single day. The results 598 

are presented for the two extreme cases of padjclothingmin and padjclothingmax adjustments. As 599 

expected, the heating consumption is higher when occupants adjust less their clothing to reach 600 

their thermal comfort. Indeed, it is found that the set point is higher when the inhabitants adjust 601 

less their clothing. Finally, the last graph of Figure 17a enables to observe the dynamics of the 602 

adjustment of the clothing over the day, which are mainly due to variations of their activity-603 

related metabolic rate. 604 
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Figure 17b presents the same time series but observing this time the effect of the thermostat 605 

adjustment parameter. As before, the two extreme cases of thermostat adjustment probabilities 606 

are observed: pajdSPmin and padjSPmax. We observe the effect of the thermostat adjustment by 607 

the occupants. During flexibility event, the set point is increased over time in the padjSPmax 608 

case, which reflects the occurrence of flexibility rejection. 609 

Concerning the dynamics of the model outside the DR events, we observe an increase in the set 610 

point and heating consumption in the morning, as well as at lunchtime. This is mainly due to 611 

the activity of the occupants and their occupancy-related thermostat schedule. Indeed, when 612 

waking up, the occupants tend to adjust the set point temperature, as well as at lunchtime when 613 

they return home. These trends are observed in Figure 17a and Figure 17b. Concerning the 614 

evolution of the clothing coverage, we chose to represent the clothing level only for the active 615 

occupants. A decrease in clothing level during the day is observed, due to an increase in both 616 

the metabolic rate and the operative temperature. 617 

 618 

Figure 17 : time series of heating sensible power, set point and clothing level for the 180-min case 619 

study (‘- -’ : minimum value, ‘—‘: maximum value) 620 

a. 

b. 
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5.2 Old/new district comparison 621 

The objective of this last study is to evaluate the importance of the building typology on the 622 

flexibility. We downgraded the building envelope properties according to the energy audit 623 

database (see Annex) giving the median values and standard deviations of Uwall, Uwindows, Ufloor 624 

and Uroof for buildings constructed during the period 1982-1989 [30]. These average values 625 

were set to 0.6, 2.98, 0.4 and 0.33 W/(m²K) respectively. It can be noticed that the standard 626 

deviations are larger than for the new district characteristics (Table 2). It should be highlighted 627 

that normal distributions might not be the best representation for partly-renovated building 628 

fabrics (log-normal distribution could be better suited [59]). However, it was decided to use 629 

normal distribution for the sake of repeatability.  The heating systems are electric convectors 630 

with a thermal efficiency equal to 1, which is representative of French heating systems typical 631 

of the 1980s. With respect to the old fabric building characteristics, the average ventilation rate 632 

was increased by a factor of 1.6 to account for the higher infiltration rate and the lower 633 

ventilation efficiency. 634 

Table 2 : Updated envelope and ventilation properties for the “old” district characteristics 635 

 Name Description µ  σ SA bounds 

[µ-Δµ; µ+Δµ] 

unit 

B
u

il
d

in
g
s 

Uwall 
Heat loss coefficient of the 

walls 
0.6 0.15 [0.57, 0.63] W/(m²K) 

Uwindow 
Heat loss coefficient of the 

windows 
2.98 0.80 [2.81, 3.15] W/(m²K) 

Ufloor 
Heat loss coefficient of the 

floor 
0.4 0.15 [0.37, 0.43] W/(m²K) 

Uroof Heat loss coefficient of the roof 0.33 0.1 [0.28, 0.32] W/(m²K) 

Qventil Air change rate 0.8 0.15 [0.85, 0.91] vol/h 

The sensitivity analysis (Figure 18) carried out for the “old” district demonstrates an increase 636 

in the flexibility potential compared to the more recent district. Indeed, the average power 637 

shifted during January reaches 1292 W, against 290 W found previously. From a general point 638 

of view, we observe that the order of the influencing parameter remains the same. Logically, 639 

the cop parameter disappears for the district with electric convector and the average day set 640 

point becomes the 7-th most influential parameter. The overall increase in the µ* parameter can 641 

be explained by the decrease in the thermal properties of the buildings. Indeed, the greater the 642 

space heating requirements, the greater the potential for flexibility.  643 
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 644 

Figure 18 : Sensitivity analysis, σ-µ* plot and µ* distribution for the electric power of the district 645 

during the month of January – old fabric district case study – Pshifted avg = 1292 W 646 

5.3 Discussions 647 

Figure 19 summarizes the results of the uncertainty analysis. For each parameter, the 648 

uncertainty is calculated as the range of variation (Δ) divided by the mean value of Pshifted. For 649 

both types of districts, we notice that occupants have a larger influence than the building 650 

properties given a district typology. Understanding the way occupants control space heating is 651 

thus of main importance to correctly estimate flexibility. This fact indicates the need for further 652 

research in occupant behavior. Moreover, it can be observed the relatively higher uncertainty 653 

for the old district, due to the larger influence on thermal comfort. This is highlighted by the 654 

fact that the set point decrease during the DR event is important for both short and long DR 655 

events. On the contrary, short DR events in the new district decrease the influence of occupants’ 656 

settings. 657 
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 658 

Figure 19 : Relative uncertainty on Pshifted for the two district typologies and the two DR event 659 

durations. 660 

Despite the broad scope of the study, some limitations should be highlighted. First of all, a 661 

district with a different compacity or with more variety of envelopes and systems might alter 662 

the conclusions. The relatively good knowledge of input data (from national databases), the 663 

homogeneity of systems and the large size of the district favored a strong decrease of some 664 

uncertainties. The evaluation of flexibility would be more challenging if some district properties 665 

are ill-known (such as construction year or type of heating system). However, this barrier should 666 

be overcome with the widespread publication of open-data on building characteristics. 667 

Furthermore, the influence of the district size has only been partly addressed in this study. An 668 

evaluation for a larger district (674 dwellings, Figure 10) was carried out and led to a slightly 669 

lower level of uncertainty.  670 

Regarding the control of the heating system, a thermostat-based flexibility activation and a 671 

continuous operation of the heat pumps (i.e. variable-speed) were assumed. For a dense 672 

residential housing stock, this correctly represents the behavior of the heat pumps. For a single-673 

family house equipped with a heat pump , an on/off working operation of the heat pump should 674 

be considered and would affect the availability of flexibility [51]. Changing the time of 675 

activation would also influence the flexibility.  676 

Finally, only one type of occupant model was tested. Further investigation should be performed 677 

and further data should be collected to challenge the influence of occupants. 678 

 679 

 680 

a. 

b. 

settings 
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6 Conclusions 681 

We have investigated the flexibility potential of a district by estimating its energy consumption 682 

from a mono-zone UBEM. Flexibility or DR event were defined as a reduction in the set point 683 

from 6 pm, which is classically an overloaded period of the electrical network in winter in 684 

France. The occupants, building characteristics and flexibility signal were set in the model 685 

according to datasets representing a current French case study. The acceptance of flexibility 686 

was modeled by a thermal comfort-based model of occupant thermostat adjustments. Finally, 687 

the flexibility potential was defined as the mean shifted power during DR event, and its 688 

calculation has been performed for a district of 337 dwellings.  689 

The positive effect of electrical load aggregation was highlighted in the prediction of the 690 

electrical load at district level, with a decrease of the uncertainty for groups of more than 50 691 

dwellings. Once the UBEM model was built, a sensitivity analysis and a linear regression 692 

analysis were performed to identify the most influential parameters on the results and to better 693 

understand the sources of uncertainty on the flexibility potential.  694 

For this winter case study, the space heating represents the greatest potential for flexibility, so 695 

we did not consider the flexibility potential on other appliances or systems. The results show 696 

the influence of modulation time and set point decrease during demand response event, 697 

occupant types and activities. The order of magnitude of the flexibility potential is about 290 W 698 

per household for the new district and about 1290 W for the old district. Several key points 699 

should be emphasized: 700 

� This study shows the great importance of the duration of the flexibility signal on the 701 

results. It appears to be one of the most influential parameters, so it must be carefully 702 

selected by the aggregator to optimize the flexibility portfolio.  703 

� Considering DR event duration, it appears that a long-DR events lead to a decrease in 704 

the shiftable power. A tradeoff between the power decrease and the duration of 705 

activation should thus be defined to optimally activate flexibility. 706 

� Occupants appear to play a key role in flexibility. The dynamic modelling of occupant 707 

behavior was carried out and allows the quantification of the occupant rejection 708 

phenomenon. The behavior of occupants must be carefully taken into account when 709 

estimating the flexibility potential. 710 

� Finally, the characteristics of the buildings did not show a too large uncertainty in the 711 

resulting flexibility at district level. Indeed, the aggregation effect was sufficient enough 712 

to dampen the diversity observed in the building databases. This conclusion is valid only 713 

if the construction period and the heating system are roughly known. 714 

This work paves the way of the flexibility characterization at district level by quantifying the 715 

source of uncertainties using a UBEM model. In future work, a focus on the most influencing 716 

parameter can be done, while considering fewer other parameters with less influence, which 717 

can improve the efficiency of the characterization of flexibility. Moreover, the strong influence 718 

of climate and flexibility signal underlines the future need for “smart” controllers in buildings. 719 
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Annex: Summary of the used datasets 724 

 725 

Category Name Type Geographical area 
Year of data 

collection 
Size Ref. 

National 

grid 

RTE (residual load) Database France 2017 - [60] 

Geometry BDTOPO (land 

register) 

Database France 2020 - [61] 

Buildings 
DPE (energy audit of 

existing buildings) 
Database 

Department (Charente-

Maritime, 17) 
2013-2020 

71 000 

households,  

1831 of similar 

type 

[62] 

RT 2012 (new 

building regulation) 
Database  Metropolitan France 

2012-2020 
136 811 

households 
[55] 

OQAI survey 

(ventilation rates) 
Survey Metropolitan France 2003–2005 567 

households 
[33] 

Occupants Population census 

(household 

composition et taux 

d’équipement) 

Survey Metropolitan France 2010-2015 28 million 

households 
[64] 

Time Use Survey 

(activities) 
Survey Metropolitan France 2009-2010 

13 950 individuals 

from 12 000 

households 

[65] 

EcoBee (smart 

thermostats) 

Appliance 

Monitoring 
Canada  2015-2020 9 000 

households 
[43] 

PHEBUS survey 

(heating habits and 

applicances 

ownership) 

Survey Metropolitan France 2013 5 345 

households 
[66] 

PEDOBUR and 

EQL'ORE projects 

(usage based on ToU) 

Survey La Rochelle, France 2019 99 

households 
x 

LINEAR project 

(shifting 

probabilities) 

Appliance 

Monitoring 
Flanders region, Belgium 2009-2014 186 

households 
[67] 

Appliances EU energy labelling 

of appliances (energy 

efficiency) 

Regulation Europe  - [68] 

TOPTEN-Ademe 

(energy class and 

size) 

Market data France 2004-2014 90% of market [69] 

REMODECE project 

(energy class and 

size) 

Appliance 

Monitoring 

Auvergne-Rhône-Alpes 

region, France 
2008 103 

households 
[70] 

FROIDLAVAGE 

monitoring campaign 

(usage) 

Appliance 

Monitoring 
Metropolitan France 2015-2016 107 

households 
[71] 

ADEME survey 

campaign (usage) 
Survey Metropolitan France 2015 1 001 

households 
[72] 
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