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Abstract: The paper deals with software sensors which facilitates the diagnosis of electrical machines
in non-stationary operating conditions. The technique targeted is order tracking for which different
techniques exist to estimate the speed and angle of rotation. However, from a methodological point
of view, this paper offers a comparison of several methods in order to evaluate their performance
from tests on a test bench. In addition, to perform the tests, it is necessary to initialize the different
methods to make them work correctly. In particular, an identification technique is proposed as well
as a way to facilitate initialization. The example of this paper is that of a synchronous generator.
Angular sampling allows the spectrum to be stationary and the interpretation of a possible defect. The
realization of the angular sampling and the first diagnostic elements require the knowledge of two
fundamental quantities: the speed of rotation and the angular position of the shaft. The estimation of
the rotation speed as well as the estimation of the angular position of the shaft are carried out from
the measurement of an electric current (or three electric currents and three voltages). Four methods
are proposed and evaluated to realize software sensors: identification technique, PLL (Phase Locked
Loop), Concordia transform and an observer. The four methods are evaluated on measurements
carried out on a test bench. The results are discussed from the diagnosis of a mechanical fault.

Keywords: software sensors; frequency tracking; non stationary; angular sampling; synchronous
machine

1. Introduction

In many industrial diagnostic applications, operators are faced with cases of non-
stationary operating modes. This is, for example, the case in the wind energy sector. In
this case, order tracking, carried out from angular sampling, makes it possible to consider
the study of the diagnosis of an electromechanical drive in non-stationary operation. For
cases where the industrial device does not have a speed sensor or a position sensor, order
tracking is really complicated to implement. The major difficulty is the estimation of the
speed and the position for the angular resampling. In this context, the main objective of
the paper is the order tracking technique from just current measurement. The difficulty
is then to estimate the speed of rotation in order to deduce the angle which serves as
the synchronization signal for the sampling [1,2]. References [1,2] present a recent and
complete bibliography in the case of order tracking, for systems used at variable speed,
from a vibratory signal. For this same reference, order tracking from current measurements
is not developed in detail. In the case of applications used at a fixed speed, the problem is
simpler. One can find interesting results and an important bibliography in reference [3].

The current context, industry 4.0, requires the processing of a large number of data
to improve the diagnostic of an industrial installation. The data, for cost reasons, come
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mainly from software sensors [4]. The signature of faults can be found in different physical
quantities: mechanical, acoustic vibrations, temperature, magnetic flux, rotation speed,
torque, electric currents, electric voltages, electric powers. More commonly, the diagnosis
is in particular possible from the vibration signals [5,6] measured by correctly placed
piezoelectric sensors [7] or strain gauges [8]. It is also interesting to be able to make the
diagnosis from the measurement of the electric currents which supply a motor. From a
physical point of view, many faults are characterized by a harmonic component for which
the frequency evolves. In this paper, we consider that the speed is not measured directly. If
the speed signal is not available from a sensor, the order tracking is difficult to perform.
This additional difficulty requires finding the speed of rotation from a harmonic analysis
of the vibratory signal or the “current” signal. As an example, we can give the many
electric motors, which in the industry, are not used with a constant rotational speed. The
appearance of a fault generally results in the appearance of a harmonic signal which is a
multiple of the speed of rotation.

From electrical current signals, to identify a fault, it is possible to search for it in the
signal spectrum. An electric current measurement must be processed to extract harmonic
components. For the consideration of future use, simplicity is important. This is why
software sensors are established from current measurements. The simplest case would be
the measurement of a single electric current. This technique is compared to those using
the measurement of the three currents. In a non-stationary context, we focus this paper
on the extraction of the instantaneous angular speed of rotation and the angular position
of the shaft. This information can be used to make an angular sampling of the signals in
order to stationarize the signals and therefore the spectrum. The angular sampling part is
not developed in this paper. Many papers deal with the frequency estimation of a signal
with methods presenting advantages for particular cases. These methods, for an industrial
application, present several difficulties: initialization and the possibility of using it in real
time [9,10].

The paper [1] presents a survey of techniques used to estimate the rotational speed
in the case where no speed sensor is available and in the case where the speed is variable.
Many methods are based on vibration measurement. However, it is possible to obtain
an estimate of the speed of rotation from the measurement of an electric current (motor
power supply) or of the three electric currents (in the case of a three-phase power supply).
This paper deals with a comparison of several techniques to help the development of
software sensors in order to help the use of order tracking techniques. The context in the
research work presented in this paper is that of a diagnostic tool for electrical machines
without a speed sensor or angular position sensor. The only measurements used will
be the measurements of electric currents (possibly measurements of electrical voltages).
The electric machine does not operate at constant speed: case of non-stationary use. In
the literature different methods exist, it remains however to specify a methodology for
adjusting the parameters. The different methods presented in the paper have already been
the subject of previous work, the methods for initializing the parameters are specified
and the results obtained are compared. This work allows to consider the choice of a
method to develop sensors with angular synchronization for the same benchmark. Thus
the calculation of the spectra of the signals x(θ) is performed (x can represent for example
a current or another physical quantity). This angular synchronization makes it possible
to process signals for non-stationary operation.The different techniques presented in this
paper can be used either offline or online. The paper also indicates methodological elements
and improvement of the initialization phase to help in the choice of a technique compared
to another.

The Section 2 details the different methods that are evaluated on a test bench. The
tests allow to evaluate the measurement of the speed of rotation of an engine according to
the following techniques: technique based on the measurement of a single current (1) or on
the measurement of the three currents (three-phase motor) (2) or on the measurement of
the three currents and three voltages (3).
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For method (1), we first present signal model identification approach (Section 2.1
and secondly a demodulation approach (Section 2.2). For method (2) and method (3),
we detail respectively a technique based on the Concordia transform (Section 2.3) and an
observer-based technique (Section 2.4).

The paper deals with tools allowing the design of software sensors for monitoring
particular frequencies. This approach is a physical approach, the frequencies tracked
correspond to physically determined fault frequencies. Other approaches are exploited in
this area such as machine learning [11] but they are not discussed in this paper.

2. Frequency Tracking: Different Tools

The different methods exposed can be used from electrical measurements (currents,
voltages) to find a harmonic component. The detected frequency is the frequency corre-
sponding to the instantaneous angular speed of rotation.

2.1. Signal Model Identification

The algorithm used is a non-linear algorithm based on an adaptive selective filter
(notch filter), it was initially proposed in [12] and used in several applications: estimation
of symmetrical components in three-phase electrical networks [13], “in situ” efficiency
estimation of asynchronous machines [14] and measure harmonics in power electronics [15].
The algorithm is detailed in the article [14] for which Equations (1)–(8) are indicated. This
paper takes up the structure proposed in [14] and proposes a new technique for initializing
the parameters of the algorithm (detailed below). We recall, that the objective of this paper
is to compare the results obtained by this algorithm with three other methods.

Let’s consider a sinusoidal signal:

I f (t) = A(t) sin ϕ(t) = A(t) sin (ω(t).t + α(t)) (1)

To this signal, we add other sinusoidal components and noise n(t) :

I(t) =
∞

∑
i=0

Ai(t) sin ϕi(t) + n(t) (2)

ϕi(t) =
∫ t

0
wi(γ)dγ + αi(t) (3)

With A(t) the signal magnitude, ω(t) the pulsation, α(t) the phase angle and n(t) the
noise component. The algorithm uses the gradient method and minimizes the square of
the error function:

e(t) = I(t)− A(t) sin ϕ(t) (4)

The algorithm is based on the following equations:

dA(t)
dt

= m1e(t) sin ϕ(t) (5)

dw(t)
dt

= m2e(t)A(t) cos ϕ(t) (6)

dϕ(t)
dt

= w(t) + m3
dw(t)

dt
(7)

The functional diagram of the algorithm (Figure 1) shows the use of three parameters,
m1, m2 and m3. No methodology is specified to initialize the three parameters. The speed
of convergence depends on the value of m1 while m2 and m3 have an impact on frequency
and phase tracking. We notice the use of integrals in the block diagram, it is therefore very
important to correctly initialize the parameters mi to ensure a convergence of the algorithm.
This step is developed below.
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Â(t)

+

+
6

-

-

-
-

+

6

?

-
-

- --
-

6
-

m1

m2

m3m2∑

cos

sin
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Figure 1. Block diagram of the non-linear identification algorithm, (Diagram from the article by [14]).

The Figure 1 shows an interesting algorithm for applications where the instantaneous
frequency must be estimated in real time. Indeed, its implementation requires only elements
of elementary calculations (additions, subtraction, multiplications, integration).

The identification algorithm allows to estimate both the frequency and the magnitude
of a sinusoidal signal. Its realization seems attractive for a “real time” application. How-
ever, the initialization of the three parameters m1, m2 and m3 remains difficult due to the
couplings between the magnitude estimation and frequency estimation loops. In addition,
the loops are non-linear, which makes setting the parameters a little more complex.

In this paper, we propose to linearize the algorithm presented (Figure 2) in order
to help initialize the parameters. Note that linearization degrades the accuracy of the
results. However, linearization is the technique we propose to initialize the algorithm.
Once the parameters are initialized, the algorithm is used in its initial version. To consider
linearization, Figure 2 separates the variations of the signal into two parts: the amplitude
part and the frequency part.

Figure 2. Linearization of the algorithm.

The input signal and the output signal are considered respectively as

u(t) = (A0 + ∆A(t))sin(2π( f0 + ∆ f (t))t + φ0) (8)

and
y(t) = (A0 + ∆Â(t))sin(2π( f0 + ∆ f̂ (t))t + φ0) (9)
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φ0 is the phase of the signals u(t) and y(t) for t = 0, it is set to an arbitrary value.
As shown in Figure 2, after linearization, two transfer functions H1 and H2 are per-

formed. Linearization results in a decoupling of the estimate of the amplitude and the
estimates of the frequency. Thus, the initialization phase, the estimation of the amplitude
can be managed independently of the frequency estimation. The calculations are not
detailed in this paper. The result of linearization leads to:

H1(s) =
∆ f̂ (s)
∆ f (s)

=
m2 A2

0π + m2m3 A2
0πs

s2 + m2m3 A2
0πs + m2 A2

0π
(10)

H2(s) =
∆Â(s)
∆A(s)

=
1

1 + s
m1

(11)

From the simplified models represented by Equations (10) and (11), resulting from
linearization, it is possible to adjust m1, m2 and m3 to fix the dynamic performance of the
estimator algorithm (magnitude and frequency). For example, from the given relation
Equation (10), it is necessary to fix a response time (tr) as well as a damping coefficient
(m) for the system H1 (model of a 2nd order system). By identification, the value of the
parameters m2 and m3 can be deduced: m2 = 9/(m2 ∗ A02 ∗ π ∗ t2

r ) and m3 = 2 ∗m2 ∗ tr/3.

2.2. Demodulation Approach

Phase Locked Loop (PLL) are widely used in different sectors such as communications
or electrical networks. The main function sought is the phase or frequency demodulation
for which the PLL are efficient in terms of speed and precision, [16]. In general, a PLL is
made up of three parts: the phase detector (PD: Phase detector), the loop filter (LF: Loop
Filter) and the Voltage Controlled Oscillator (VCO: Voltage controlled oscillator). Many
improvements have been made, motivated by the need to design digital PLL [17,18]. The
solution most encountered is the use of a Quadrature Phase Detector (QPD) [19]. The QPD
uses an orthogonal signal generator (OSG) to create 90-degree phase shifted signals. The
harmonic after multiplication is canceled due to orthogonality. The OSG solution appears
today as a robust topology against noise and rapid changes.

The OSG proposed by [20] uses two derivative elements (DE: derivative element) to
calculate the phase error (Figure 3).

Each block DEx is composed of two filters whose phase difference is constant and
equal to π/2 whatever the frequency of the input signal as shown in the Figure 4.

(b)

(a)
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- -
6
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- -����
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v f

Figure 3. PLL. (a) Basic structure. (b) Phase detection.
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Figure 4. Bode plot of Gx and G
′
x.

The transfer functions of the two filters Gx and G
′
x are given by:

Gx(s) =
ω2

Rs
s2 + 2ωRs + ω2

R
(12)

G
′
x(s) =

ω2
R

s2 + 2ωRs + ω2
R

(13)

with:

- Gx: Bandpass filter with central frequency ωR,
- G

′
x: Low-pass with cut-off frequency filter ωR.

More details are given in [21]. This version of the PLL does not work correctly for
signals having both a variation of the frequency and a variation of the magnitude. To solve
this problem, a normalization of the magnitude of the input signal is proposed.

The structure modified is presented on Figure 5. vα and vβ are the output of OSG and
are nomalized using the amplitude

√
(v2

α + v2
β).

ve

-

�

+

−
ε

sinϑ̂
ϑ̂

�cosϑ̂

-

vα

vβ

OSG

-

-

vαN

vβN

-

- -

-

6

6
vα√

(v2
α+v2

β)

vβ√
(v2

α+v2
β)

vsα

vsβ

Figure 5. Normalization of PLL entry.

It is noted that, following standardization, the PLL is working properly. If we take the
expressions of the two OSG filters (12) and (13), we note these filters are centered on their
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central pulsation ωR which is fixed here at ωR = 2πFc. In order to improve the PLL, we
use adaptive filters so that the OSG filters can follow the input frequency variations.

The adaptation is carried out according to the estimated pulsation noted ω̂ as indicated
in the Figure 6.

ve

-

�

+

−
ε

sinϑ̂
ϑ̂

�cosϑ̂

-

vα

vβ

OSG

-

-

vαN

vβN

-

- -

-

6

6
vα√

(v2
α+v2

β)

vβ√
(v2

α+v2
β)

vsα

vsβ

ω̂

6

Figure 6. The PLL input normalization.

In order to realize the adaptive OSG filters, we use a state variable structure (Figure 7).

- - -
? ∫ ∫-

-
+

Ve
V1 V2

V3

Band Pass

Low Pass
?

�

?

2m
1

2m
ω̂

- - - -

�

6

Figure 7. State variable filter diagram.

The adaptation of the input filters associated with normalization now makes it possible
to follow the variations in frequency of the input signal while remaining insensitive to
variations in magnitude.

2.3. Concordia Transform Method

When three current measurements are available, the simplest method for estimating
the magnitude and the instantaneous phase is the Concordia transform. Consider that the
instantaneous magnitude IA(t) and the instantaneous frequency IF(t) can be estimated by
the following relations:

IA(t) =
√

i2α(t) + i2β(t)

φ(t) = atan(
iβ(t)
iα(t)

)

IF(t) = 1
2π

d
dt φ(t)

(14)

Estimation of different signals can be obtained from two currents under the assump-
tion of load balance (Figure 8).

The instantaneous pulse IW(t) is proportional to the derivative of the instantaneous
phase IP(t). In practice, we avoid directly calculating this derivative numerically since
the current measurements are noisy. An alternative is to use a phase in a closed loop
structure (Figure 9).
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Figure 8. Diagram of the estimation of the position and angular speed via Concordia.

Figure 9. Phase control.

The system is first order in closed loop. The transfer between the instantaneous phase
θe(t) reconstructed by Concordia and the phase estimated at the output of the closed loop
θs(t) is a low pass filter.

θs(s)
θe(s)

=
1

1 + s
k

(15)

The dynamic is directly fixed by the parameter k. In the case of a phase variation in
the ramp (fixed speed for example), There is a speed error.

The transfer between the instantaneous phase θe(t) and the instantaneous pulsation
IWest(t) is a high pass filter.

IWest(s)
θe(s)

=
s

1 + s
k

(16)

For k > 1 this transfer is a high pass type (derivative filtered in high frequency) with a
constant static gain for the pulsations such as ω > k.

In theory, the transfer between the real instantaneous pulse IW(t) and the estimated
pulse IWest(t) at the input of the integrator is governed by the system (15). However, this
is only correct if the relation IW(t) = d

dt IP(t) is true. In reality, θe(t) is deduced from
the measurement of the currents and from the computation of the function ATAN. The
imperfections introduced by these calculation mean that the transfer between IW(t) and
IWis(t) does not really behave like a first order low pass filter. This will be discussed in
the Section 4.

A priori, the transformation of Concordia appears as a solution easy to use to estimate
both the mechanical angle and the speed of the electric generator. After a series of tests on
the experimental setup, the use of the Concordia transform is tricky. This technique is very
sensitive to measurement noise.
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2.4. Observer-Based Technique

The adaptive observer used in this subsection is defined as direct and quadrature
(d/q) components [22,23]. The rotor speed and the angular position are estimated from
the error between the stator currents measured and those estimated by the model. An
adaptation mechanism is designed using the error of estimation of the stator currents in
order to estimate the speed of the rotor. The adaptive model takes as feedback the output of
the adaptation mechanism (i.e., the speed of the rotor). The adaptive observer structure is
shown in Figure 10, where the stator currents are chosen as state variables in the adaptive
model. Regarding the stability study, the paper specifies the elements that characterize the
robustness property of stability from experimental tests.

?

System

Model
Adaptive

PI

6

-

us is

îs +
-

ŵ

ĩs

Adaptive Observer

- - -

-

6

Figure 10. Block diagram of the system and the adaptive observer.

The adaptive observer model can be written as follows:

˙̂ψs = us − Rs îs − pω̂m Jψ̂s + λĩs (17)

with:

- us =
[

ud uq
]T represents the vector of stator voltages.

- îs =
[

îd îq
]T represents the vector of stator currents.

- ψ̂s =
[

ψ̂d ψ̂q
]T represents the flow stator.

- Rs represents the stator resistance.

- pω̂m = ˙̂θm represents the estimated position of the rotor (rotor angle).
- J is a square matrix of order 2:

J =
[

0 −1
1 0

]
(18)

- ĩs represents the error of estimation of the stator currents:

ĩs = is − îs (19)

The flux equation is defined by:

îs = L−1(ψ̂s − ψpm
)

(20)

with:

- ψpm represents the permanent magnet flux expressed as: ψpm =
[

ψpm 0
]T .

- L represents the matrix of inductances which depends respectively on the inductances
along the direct axis and the quadrature axis Ld and Lq:

L =

[
Ld 0
0 Lq

]
(21)
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- λ in the Equation (17) represents the feedback gain matrix. In order to place two
poles of the observer in the complex plane at a specific position, λ must include a
symmetrical part and an antisymmetric part as follows:

λ = λ1 I + λ2 J (22)

with:
- I represents an identity matrix of order 2.
- λ1 and λ2 represent scalar gains.

The current error is computed as follows:

ε =
[

0 Lq
]
· ĩs (23)

To estimate the electrical angular speed of the rotor, an adaptation based on a proportional-
integral regulator (PI) is performed.

ω̂ = pω̂m = −kp · ε− ki

∫
ε · dt (24)

with kp and ki the coefficients of the PI regulator.
The estimated rotor position θ̂m(t) is obtained by integrating the estimated angular

speed of the rotor ω̂m(t).
Usually this type of observer is used for machine control. The observer parameters

λ1, λ2, kp and ki are determined to tune the dynamics of estimation of the currents (λ1, λ2)
and the speed ( kp and ki). In [24], this observer was adjusted specifically for mechanical
diagnosis at fixed speed.

For the diagnosis, a study carried out by [24] shows the behavior of the observer and
thus makes it possible to adjust parameters λ1, λ2, kp and ki. By linearization, a study of the
dynamic functioning of the observer makes it possible to calculate the transfer functions
which allow to compute the speed.

• F33(s) =
ω̂(s)
id(s)

.

• F34(s) =
ω̂(s)
iq(s)

.

• F35(s) =
ω̂(s)
ω(s) .

These three transfer functions are shown in the Figure 11.

Figure 11. Bode plot for F33(s), F34(s) and F35(s) with ki = 60, kp = −0.04, λ1 = 15 and λ2 = 0.
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3. Experimental Setup

The tests are carried out on the test bench presented in this section. However, the
tools presented in this paper can be transposed to other synchronous machine technologies.
Simply for the observer-based technique, it is necessary to modify the model used.

The test bench is presented on Figure 12. The test machines are synchronous machines
from Leroy Somer with their approximate power of 8 kW. They are connected to the
electrical network through two speed drivers. The generator operates in regeneration and
energy return mode to the electrical network. The speed control strategy or a torque control
strategy can be chosen for both machines. They are linked by a COMPABLOC multiplier
(LEROY SOMER) with speed ratio N = 4.57 located on the motor side.

Figure 12. Laboratory test bench.

A measurement box makes it possible to recover the currents and voltages of the ma-
chines. Position measurement is available on low and high speed sides. The measurements
are transmitted to a Dspace DS1104 acquisition system with MATLAB/Simulink.

The parameters of each of the machines are found in the Tables 1 and 2.

Table 1. Characteristics of the permanent magnet synchronous engine.

Engine Characteristics and Parameters

Nominal power Pm 7.8 kW
Nominal voltage V 360 V
Nominal current I 15.6 A
Nominal speed ωls 750 rpm
Nominal mechanical torque Tm 99 N.m
Frequency f 50 Hz
Energy efficiency 89%
Stator resistance Rs 1 Ω
Inductance of the axis d Ld 25.7 mH
Inductance of the axis q Lq 25.9 mH
Magnetic flux λ 0.8 Wb
Inertia Jt 0.0418 Kg.m 2

Encoder resolution 1024 points/revolution
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Table 2. Characteristics of the permanent magnet synchronous generator.

Characteristics and Parameters of the Generator

Nominal power Pm 8.7 kW
Nominal voltage V 360 V
Nominal current I 16.2 A
Nominal speed ωhs 3000 rpm
Nominal mechanical torque Tm 28 N.m
Frequency f 200 Hz
Energy efficiency 93%
Stator resistance Rs 0.6 Ω
Inductance of the axis d Ld 6.58 mH
Inductance of the axis q Lq 6.6 mH
Magnetic flux λ 0.8 Wb
Inertia Jg 0.00663 Kg.m2

Encoder resolution 2500 points/revolution

The Figure 13 recalls the structure of the software sensor proposed in this paper. The
angle measurement, Θ(t) is used for angular sampling of the signals. This sampling mode
makes it possible to make the spectrum stationary in the case of a non-stationary signal.
The Section 4 evaluates the different techniques proposed in this paper by comparing the
spectra obtained to a theoretical spectrum.

-

-

-

-

6

x(t)
Software Sensor

Θ(t)

ω(t)

x(Θ)

∆Θ

Figure 13. Software sensor for angular sampling.

To evaluate and compare the four proposed techniques, we propose to work on a
current signal (or current signals) in the case where there is no fault and in the case where
there is a fault. The fault is created from the device described in Figure 14. The device
makes it possible to disrupt operation with nine impacts per revolution. The test bench
multiplier has a ratio of 4.57, which therefore corresponds to 1.97 impacts per revolution
(generator side). The different algorithms compute hand the speed of rotation and the
angle used for an angular sampling of the signal. Therefore, the measured signal no longer
depends on time but on the angular position. The signal is denoted x(Θ). With Fourier
theory, we calculate the “spectrum” of x(Θ). The result will be expressed in “ev/tr”. Thus,
the spectrum is fixed despite the non-stationary operation of the electric machine. The
quality of the estimation of the speed and of the angle can be evaluated from the quality of
the spectrum. Therefore, on the spectrum obtained with the signal x(Θ), the information
to be observed is located at g = gd = 1.97 events per revolution. In fact, the multiplier
is defined with a speed ratio N = 4.57 located on the motor side. So with a default of
9 impacts per revolution g = 9

4.57 = 1.97 events per revolution.
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Figure 14. Mechanical fault used with the test bench.

4. Experimental Results and Discussion of Numerical Results

From the description of the experimental setup described in Section 3, each tech-
nique requires initialization of parameters as indicated in Table 3. The parameters were
initialized for each method by considering the dynamics of the magnitude estimation
and the frequency estimation. In fact the frequency of rotation evolves over time with a
certain dynamic that it is important to consider to initialize the different parameters. The
estimation of the rotational speed and the angular position must be made with sufficient
dynamics and precision for the angle to be used for angular resampling. The temporal
dynamics to extract the value of the angular position must be carried out quickly with
respect to the speed of rotation of the machine. So the bandwidth of the software sensor
thus developed is greater than the frequency of rotation of the electric machine. Several
experimental tests were carried out to initialize the algorithms proposed in this paper.

Table 3. Parameters for setting the estimation methods.

Method Parameters Initialization

Identification m1, m2, m3 m1 = 200, m2 = 1800, m3 = 0.0133
PLL Kp, Ki Kp = 61, Ki = 367

Concordia Phase control: k, τ k = 100, τ = 0.003
Observer λ1, λ2, kp, ki λ1 = 300, λ2 = 0, kp = 0, ki = 150

For Figures 15 and 16, the first plot named “measure” is obtained from the sensors
available on the test bench. These plots are used to check and compare the efficiency of the
four alogorithms proposed in this paper.

The first results (Figure 15) obtained show the influence of the noise on electric current
measurements. In this test, the noisy currents are directly transmitted to the algorithms.
Their ability to naturally filter out measurement noise is therefore tested. The recording of
30 cycles has a duration of 3 min and 45 s. First, the algorithms are applied to a faultless
data set, then a data set with a default of 9 impacts per revolution on the motor side
(g = gd = 1.97 events per revolution). We define a ratio of the amplitudes found in
g = 1.97 events per revolution with and without fault. This ratio is computed by dividing
the magnitude of the spectrum defect (with defect) by the average magnitude around
the spectrum defect (without defect). For the test considered, the average magnitude
is computed in the band [1.95; 2] events per revolution. The results are summarized in
the Table 4.



Robotics 2021, 10, 59 14 of 17

Figure 15. Comparison of methods over 30 cycles and without low-pass filter. The time curves are
expressed in mechanical rotation frequency (Hz).

Table 4. Comparison table of methods over 30 cycles without low-pass filter. ev/rev:
events/revolution and NV: Normalized Voltage.

Method Frequency of
Fault (ev/rev)

Magnitude
with Fault

(NV)

Average
Magnitude

without Fault (NV)

Ratio of
Magnitudes

(without Unit)

Measures 1.968 0.100 0.0019 52.68
Identification 1.968 0.069 0.0071 9.78

PLL 1.968 0.048 0.003 16.18
Concordia 1.997 0.757 0.3125 2.42
Observer 1.965 0.097 0.0179 5.41

Note that all the methods give estimated noisy speeds, except the PLL. Filters used to
normalize the current signal at the PLL input have filtered out noise. When the estimate
is too noised, there is a risk that the information about a defect is drowned in the noise.
The addition of an additional filter possible, however its adjustment is delicate: it is not
necessary to filter the information concerning a sought fault. Despite the noise on the
estimated speeds, the identification algorithm and the observer allow the location of the
fault by their natural filtering: an integrator (low pass filtering) is necessary to obtain the
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angular position which is used for the resampling. Note that the least effective method
without filtering seems to be the Concordia transform. The Table 4 shows that the ratio
calculated for the PLL is the best, which is predictable because this method is the only one
which offers bandpass filtering of the signal by its OSG filters.

In this new test, the currents are filtered by a low-pass filter before estimation. The
mechanical rotation frequency varies between 2.5 and 12.5 Hz , from an electrical point
of view. In fact, for the electric machine we are using, these frequencies correspond to
75 round/min and 375 round/min respectively. The currents are filtered by a first order
low-pass filter with a cut-off frequency equal to 100 Hz. The results are given on the
Figure 16 and Table 5.

Figure 16. Comparison of methods over 30 cycles and with low-pass filter. The time curves are
expressed in mechanical rotation frequency (Hz).

In this test, the estimated speeds are less noisy for all the methods. The speed estimated
by Concordia is always noisy, especially at low frequencies. Indeed, in this method, we
first estimate the position by the ATAN function and then we derivate to obtain the
instantaneous pulsation. Even if the position control allows a derivative filtered at high
frequencies, the amplification of the noise remains. The speed estimate has improved for
the identification algorithm and for the observer.

To understand the interest of comparing results, it is important to remember the
context of the work: tools for the development of a synchronized sensor from an angular
position. The signals used are electrical currents and voltages. The electrical machine
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is used in a non-stationary context. The quality of the estimate with respect to noise is
important because the signal obtained by angular synchronization is be used for a future
diagnostic step (not treated in this paper). Each method behaves like a filter, the effects of
noise are visible on the tests carried out on the test bench.

From the Table 5, by comparing the magnitude ratios, Concordia method seems the
weakest to detect the defect compared to the other algorithms. Identification and PLL
have a small advantage over the observer. It can be noted that the magnitude of the fault
estimated by the observer is the greatest, but the noises are also amplified.

Table 5. Comparison table of methods over 30 cycles with low-pass filters. ev/rev: events/revolution
and NV: Normalized Voltage.

Method Frequency of
Fault (ev/rev)

Magnitude
with Fault

(NV)

Average
Magnitude

without Fault (NV)

Ratio of
Magnitudes

(without Unit)

Measures 1.968 0.100 0.0019 52.68
Identification 1.968 0.065 0.0036 18.25

PLL 1.968 0.048 0.0030 16.08
Concordia 1.968 0.062 0.0145 4.28
Observer 1.968 0.098 0.0074 13.33

5. Conclusions

In this paper, several methods have been tested allowing to estimate simultaneously
the frequency of rotation and the mechanical position of the generator shaft in order to
carry out an angular sampling. The comparative tests show good results for the PLL and
the monitoring by the observer and Concordia which gives the least good results. This is
an interesting result because it is not intuitive. Indeed, on looking here that a single current
may be sufficient to achieve the isolation of the component sought. The use of 3 currents
does not seem to be a relevant criterion here. The observer also gives good results, but it
is necessary to have measurements of tensions and especially the model of the machine
that complicates its use in industrial environment. For the two remaining methods, PLL
and identification, it seems that the second remains the most robust if we consider the
interpretation of the parameters m1, m2 and m3 as valid.

Author Contributions: L.R., E.E., A.S., T.D. and S.C. proposed the main idea of the paper; A.A., L.R.
and E.E. developed differents méthods proposed in this paper. L.R. and T.D. developed the online
re-sampling system. A.A. and S.C. implemented simulation verification, analyses and experimental
tests. The paper was written by L.R., A.A. and E.E., and was revised by S.C., A.S. and T.D. All the
authors were involved in preparing the final version of this manuscript. Besides, this whole work
is supervised by L.R., A.A. and E.E. All authors have read and agreed to the published version of
the manuscript.

Funding: Research reported in this publication was supported by FEDER Program Poitou-Charentes
of the European Union under award number PC158.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, S.; Yan, R.; Liu, Y.; Wang, Q. Tacholess Speed Estimation in Order Tracking: A Review With Application to Rotating Machine

Fault Diagnosis. IEEE Trans. Instrum. Meas. 2019, 68, 2315–2332. [CrossRef]
2. Peeters, C.; Leclere, Q.; Antoni, J.; Lindahl, P.; Donnal, J.; Leeb, S.; Helsen, J. Review and comparison of tacholess instantaneous

speed estimation methods on experimental vibration data. Mech. Syst. Signal Process. 2019, 129, 407–436. [CrossRef]
3. Dineva, A.; Mosavi, A.; Gyimesi, M.; Vajda, I.; Nabipour, N.; Rabczuk, T. applied sciencesArticleFault Diagnosis of Rotating

Electrical Machines UsingMulti-Label Classification. Appl. Sci. 2019, 9, 5086. [CrossRef]
4. Kabugo, J.C.; Jämsä-Jounela, S.L.; Schiemann, R.; Binder, C. Industry 4.0 based process data analytics platform: A waste-to-energy

plant case study. Int. J. Electr. Power Energy Syst. 2020, 115, 105508. [CrossRef]
5. Dlamini, V.; Naidoo, R.; Manyage, M. A non-intrusive method for estimating motor efficiency using vibration signature analysis.

Int. J. Electr. Power Energy Syst. 2013, 45, 384–390. [CrossRef]

http://doi.org/10.1109/TIM.2019.2902806
http://dx.doi.org/10.1016/j.ymssp.2019.02.031
http://dx.doi.org/10.3390/app9235086
http://dx.doi.org/10.1016/j.ijepes.2019.105508
http://dx.doi.org/10.1016/j.ijepes.2012.09.015


Robotics 2021, 10, 59 17 of 17

6. Yamamoto, G.K.; da Costa, C.; da Silva Sousa, J.S. A smart experimental setup for vibration measurement and imbalance fault
detection in rotating machinery. Case Stud. Mech. Syst. Signal Process. 2016, 4, 8–18. [CrossRef]

7. Zhang, H.; Zanchetta, P.; Bradley, K.J.; Gerada, C. A Low-Intrusion Load and Efficiency Evaluation Method for In-Service Motors
Using Vibration Tests With an Accelerometer. IEEE Trans. Ind. Appl. 2010, 46, 1341–1349. [CrossRef]

8. Ágoston, K. Vibration Detection of the Electrical Motors using Strain Gauges. Procedia Technol. 2016, 22, 767–772. [CrossRef]
9. Jiang, L.; Li, L.; Zhao, G.; Pan, Y. Instantaneous Frequency Estimation of Nonlinear Frequency-Modulated Signals Under Strong

Noise Environment. Circuits, Syst. Signal Process. 2016, 35, 3734–3744. [CrossRef]
10. Liang, Y. Adaptive frequency estimation of sinusoidal signals in colored non-Gaussian noises. Circuits Syst. Signal Process. 2020,

19, 517–533. [CrossRef]
11. Gangsar, P.; Tiwari, R. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A

state-of-the-art review. Mech. Syst. Signal Process. 2020, 144, 106908. [CrossRef]
12. Ziarani, A.; Konrad, A. A method of extraction of nonstationary sinusoids. Signal Process. 2004, 84, 1323–1346. [CrossRef]
13. Naidoo, R.; Pillay, P.; Visser, J.; Bansal, R.; Mbungu, N. An adaptive method of symmetrical component estimation. Electr. Power

Syst. Res. 2018, 158, 45–55. [CrossRef]
14. Siraki, A.G.; Gajjar, C.; Khan, M.A.; Barendse, P.; Pillay, P. An Algorithm for Nonintrusive In Situ Efficiency Estimation of

Induction Machines Operating With Unbalanced Supply Conditions. IEEE Trans. Ind. Appl. 2012, 48, 1890–1900. [CrossRef]
15. McNamara, D.; Ziarani, A.; Ortmeyer, T. A New Technique of Measurement of Nonstationary Harmonics. IEEE Trans. Power

Deliv. 2007, 22, 387–395. [CrossRef]
16. Golestan, S.; Ramezani, M.; Guerrero, J.M.; Monfared, M. dq-Frame Cascaded Delayed Signal Cancellation- Based PLL: Analysis,

Design, and Comparison With Moving Average Filter-Based PLL. IEEE Trans. Power Electron. 2015, 30, 1618–1632. [CrossRef]
17. Han, Y.; Luo, M.; Zhao, X.; Guerrero, J.M.; Xu, L. Comparative Performance Evaluation of Orthogonal-Signal-Generators-Based

Single-Phase PLL Algorithms—A Survey. IEEE Trans. Power Electron. 2016, 31, 3932–3944. [CrossRef]
18. Yu, B. An Improved Frequency Measurement Method from the Digital PLL Structure for Single-Phase Grid-Connected PV

Applications. Electronics 2018, 7, 150. [CrossRef]
19. Thacker, T.; Boroyevich, D.; Burgos, R.; Wang, F. Phase-Locked Loop Noise Reduction via Phase Detector Implementation for

Single-Phase Systems. IEEE Trans. Ind. Electron. 2011, 58, 2482–2490. [CrossRef]
20. Guan, Q.; Zhang, Y.; Kang, Y.; Guerrero, J.M. Single-Phase Phase-Locked Loop Based on Derivative Elements. IEEE Trans. Power

Electron. 2017, 32, 4411–4420. [CrossRef]
21. Doget, T.; Etien, E.; Rambault, L.; Cauet, S. A PLL-Based Online Estimation of Induction Motor Consumption Without Electrical

Measurement. Electronics 2019, 8, 469. [CrossRef]
22. Omrane, I.; Etien, E.; Dib, W.; Bachelier, O. Modeling and simulation of soft sensor design for real-time speed and position

estimation of PMSM. ISA Trans. 2015, 57, 329–339. [CrossRef]
23. Etien, E.; Rambault, L.; Cauet, S.; Sakout, A. Soft sensor design for mechanical fault detection in PMSM at variable speed.

Measurement 2016, 94, 326–332. [CrossRef]
24. Masmoudi, M.L. Détection d’un Défaut Localisé dans un Multiplicateur D’éolienne: Approche par Analyse des Grandeurs

Électromécaniques. Ph.D. Thesis, University of La Rochelle, La Rochelle, France, 2015.

http://dx.doi.org/10.1016/j.csmssp.2016.07.001
http://dx.doi.org/10.1109/TIA.2010.2049550
http://dx.doi.org/10.1016/j.protcy.2016.01.037
http://dx.doi.org/10.1007/s00034-015-0230-2
http://dx.doi.org/10.1007/BF01271286
http://dx.doi.org/10.1016/j.ymssp.2020.106908
http://dx.doi.org/10.1016/j.sigpro.2004.05.008
http://dx.doi.org/10.1016/j.epsr.2018.01.003
http://dx.doi.org/10.1109/TIA.2012.2225813
http://dx.doi.org/10.1109/TPWRD.2006.874622
http://dx.doi.org/10.1109/TPEL.2014.2315872
http://dx.doi.org/10.1109/TPEL.2015.2466631
http://dx.doi.org/10.3390/electronics7080150
http://dx.doi.org/10.1109/TIE.2010.2069070
http://dx.doi.org/10.1109/TPEL.2016.2602229
http://dx.doi.org/10.3390/electronics8040469
http://dx.doi.org/10.1016/j.isatra.2014.06.004
http://dx.doi.org/10.1016/j.measurement.2016.07.091

	Introduction
	Frequency Tracking: Different Tools
	Signal Model Identification
	Demodulation Approach
	Concordia Transform Method
	Observer-Based Technique

	Experimental Setup
	Experimental Results and Discussion of Numerical Results
	Conclusions
	References

