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 27 

Abstract 28 

In port areas the identification of contamination sources is necessary for an efficient 29 

management. Biomonitoring provides information on the environmental impact of the 30 

pollutants. It is often difficult to differentiate the natural variations of biomarkers from those 31 

induced by pollution. The present study aims to define a baseline level for biochemical 32 

biomarkers in limpet (Patella sp.) collected in four North-Corsica port areas. Reference data 33 

for five biomarkers (superoxide dismutase, glutathione S-transferase, laccase, pyruvate kinase 34 

and acetylcholinesterase) were described in a model, using length of the limpet shell, 35 

temperature and salinity. The measured biomarkers responses on potentially polluted sites 36 

usually fell within the range of the expected values for an unaffected site, suggesting that a main 37 

part of the variations is explained by environmental conditions. Not included in the model, 38 

biological factors (sex, development stage, etc.), annual variation or other physico-chemical 39 

parameter could explain the variations in the model. 40 

 41 

 42 
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As a semi-enclosed sea affected by a growing coastal urbanization, the Mediterranean Sea is 46 

the recipient of numerous anthropic pollutants (trace elements, organic and emergent 47 

compounds). In addition to the pollutants coming from terrestrial discharges or anthropogenic 48 

contamination (Benali et al., 2015; Lafabrie et al., 2008), port areas are also impacted by 49 

recreational activities, adding further pressure on the ecosystem (Maisano et al., 2017). To set 50 

up an effective environmental management of port areas, it is important to define the sources 51 

of the pollution and its impacts on the ecosystem. This is why the monitoring of coastal 52 

environment is essential for policy makers involved in the European Water Framework 53 

Directive (WFD). However, monitoring natural marine ecosystems regarding chemical 54 

mixtures is challenging and remains until today one of the major challenges in ecotoxicology. 55 

Biomonitoring consists on the study of geographical and temporal trends of contaminants 56 

through biological responses of an organism (Lacroix et al., 2015; Rainbow, 2002). It has been 57 

developed to identify sources of pollution and prevent risks of future potential pollution 58 

accidents. Compared to simple chemical water analysis, biomonitoring is a time-integrated 59 

method and allows the evaluation of effects of contaminants on organism health (Lacroix et al., 60 

2015; Luna-Acosta et al., 2015; Rainbow, 2002; Wang, 2016). Limpets (Patella sp.) are more 61 

and more used for biomonitoring studies and is considered as a promising bioindicator (Pérez 62 

et al., 2019; Reguera et al., 2018) due the its abundance, its sedentary lifestyle, its large 63 

distribution or its ease of sampling (Campanella et al., 2001; Pérez et al., 2019). Moreover, the 64 

use of native biota as a monitoring tool for bioavailable pollutants in aquatic ecosystems was 65 

demonstrated to constitute a highly valuable approach (Bertrand et al., 2018). Limpets are now 66 

widely used in biomonitoring studies (Pérez et al., 2019; Reguera et al., 2018; Sánchez-Marín 67 

et al., 2022; Viñas et al., 2018) and their high sensitivity to pollutants was demonstrated (Conti 68 

et al., 2017; Reguera et al., 2018).  69 
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In environmental study, when a mixture of contaminants is present, it is recommended to use a 70 

multi-biomarkers approach and to consider the environmental physicochemical parameters, to 71 

differentiate the reversible effects from the irreversible ones (Garmendia et al., 2011). This 72 

approach provides a better understanding and a more integrated view of the biological responses 73 

in environmental risk assessment (Cravo et al., 2009; Ozkan et al., 2017). The efficiency of the 74 

multi-biomarkers approach has been proven by several authors (Ait Alla et al., 2006; Damiens 75 

et al., 2004; Garmendia et al., 2011; Guo et al., 2017; Vidal et al., 2002). 76 

A wide diversity of biomarkers is used in a multi-biomarkers approach but the most common 77 

are usually enzymes involved in antioxidative defences (Breitwieser et al., 2018; Ghribi et al., 78 

2020; Luna-Acosta et al., 2017b), in nervous system (Lionetto et al., 2013; Lionetto et al., 2003; 79 

Matozzo et al., 2005), in immunity (Luna-Acosta et al., 2017a) or in energetic metabolism 80 

(Falfushynska et al., 2019; Zebral et al., 2020). However, it is also demonstrated that biotic 81 

factors (length, weight, reproductive cycle, etc.) (Louis et al., 2021), and abiotic factors 82 

(temperature, salinity, etc.) (Castaldo et al., 2021; Prusina et al., 2014; Torossian et al., 2020; 83 

Uluturhan et al., 2019; Zebral et al., 2020) can impact the biomarkers responses (Lomartire et 84 

al., 2021). It is necessary to make a distinction between the fluctuations of biological responses 85 

due to pollutants from the ones due to biotic or abiotic factors (Kalman et al., 2010).  86 

Recently, several authors worked to define baseline data in biomarker using statistical analyses 87 

with the standardization of data and the implementation of a predictive model (Barbarin et al., 88 

2022; Barrick et al., 2018; Baudou et al., 2021; Benito et al., 2019; Storhaug et al., 2019). The 89 

Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) 90 

and ICES (The International Council for the Exploration of the Sea) developed a method 91 

recommending the sampling of individuals at reference location over several seasons to record 92 

the variations of cofounding factors with the measure of biomarkers, and allowing the 93 

identification of polluted locations (Amiard-Triquet et al., 2015; OSPAR, 2013). It then defines 94 
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the range of values expected in a reference site as the baseline level and values outside this 95 

range could be classified into categories to define the range where environmental impacts are 96 

expected. Several approaches were tested to define these baselines, and demonstrated the need 97 

to use tools to identify anthropogenic and natural variations (Amiard-Triquet et al., 2015; 98 

OSPAR, 2013). It is also important to characterize the relationship between cofounding biotic 99 

and abiotic factors to describe the influence of these parameters on the biomarker responses 100 

(Barrick et al., 2016). An effective approach is based on a multiple polynomial regression model 101 

and k-means clustering to standardize the influence of cofounding factors on the biomarker 102 

response, but the model needs to be chosen carefully (Barbarin et al., 2022; Barrick et al., 2018; 103 

Burgeot et al., 2010). 104 

 105 

In the present study, the objective was to establish, through a predictive model, a baseline 106 

assessment criterion for biochemical biomarkers in limpet used for port area biomonitoring in 107 

North-Corsica. These additional data will provide more information on the ecological state of 108 

the ecosystem in this area and will be used to improve the environmental management of the 109 

ports.   110 

 111 

St-Florent (N 42° 40' 50.362''; E 9° 17' 54.373''), Île Rousse (N 42° 38' 23.406''; E 8° 56' 7.778') 112 

and Calvi (N 42° 33' 59.116''; E 8° 45' 29.094'') ports were chosen as exposed locations 113 

(Figure 1). The STARESO station in the Revellata bay (N 42° 34' 49.584''; E 8° 43' 31.511'') 114 

was chosen as the reference location (Figure 1) because it is distant from any city.  115 

 116 
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 117 

Figure 1 Map of the experimental locations in North Corsica (France). 118 

 119 

At each sampling date, physicochemical parameter of water (temperature in °C and salinity in 120 

PSU) were measured in the water column (~1 m of depth) using a CastAway CTD® 121 

(Conductivity Temperature Depth) probe. Wild limpets (n > 7 per location) were sampled 122 

during two years (September 2020, January 2021, September 2021 and January 2022). 123 

Seasonal, temperature and salinity, as well as the shell length of limpets collected at each 124 

sampling period are shown in Table 1. 125 

 126 
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Table 1: Shell length (mean ± SD) of collected limpet, temperature and salinity observed at 127 

each sampling period for the different sampling locations 128 

site date 
Sample 

size Shell length (cm) Temperature (°C) Salinity (PSU) 

STARESO September 2020 8 4,06 ± 0,52 24,08 37,40 

January 2021 10 3,49 ± 0,36 13,65 37,74 

September 2021 10 3,7 ± 0,45 24,14 38,26 

January 2022 7 3,68 ± 0,44 14,12 38,45 
Calvi September 2020 8 4,05 ± 1,02 23,83 38,14 

January 2021 10 3,5 ± 0,4 13,26 37,47 

September 2021 8 3,7 ± 0,4 23,81 38,24 

January 2022 10 3,54 ± 0,46 13,24 38,34 
Île Rousse September 2020 8 3,3 ± 0,64 24,71 38,03 

January 2021 10 3,67 ± 0,31 12,60 37,75 

September 2021 10 3,29 ± 0,47 23,90 38,22 

January 2022 10 3,25 ± 0,4 13,33 38,44 
St Florent September 2020 8 3,22 ± 0,6 24,21 37,24 

January 2021 10 2,82 ± 0,2 11,39 29,08 

September 2021 10 3,35 ± 0,26 23,11 37,87 

January 2022 10 3,18 ± 0,38 13,86 37,36 

 129 

 130 

Individuals were collected on site (n > 7, see Table 1), immediately frozen in liquid nitrogen 131 

and kept at -80°C until further biochemical analyses. Back in the laboratory, the whole soft 132 

tissues of limpet were ground in liquid nitrogen using a MM400 Retsch© (GmbH, Éragny, 133 

Luxemburg) mixer mill and then hand homogenized on ice in one volume of phosphate buffered 134 

saline (PBS) solution (100 mM, pH 7.5) containing 0.1 % Triton X-100 and one mM 135 

ethylenediaminetetraacetic acid (EDTA) to avoid protein degradation. The samples were 136 

centrifuged 15 min at 12500 g at 4°C (Sorvall Legeng Micro 17R, ThermoFisher Scientific, 137 

Waltham, Massachusetts, USA). The supernatant was used for the subsequent biomarker 138 

analyses. The capacity to respond to oxidative stress was evaluated using superoxide dismutase 139 

(SOD - EC 1.15.1.1) activity using Paoletti et al. (1986)’s protocol. The activity of glutathione 140 

S-transferase (GST - EC 2.5.1.18), enzyme involved in detoxification process, was determined 141 

following Habig et al. (1974). The laccase (LAC - EC 1.10.3.2) is involved in the immune, 142 
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antioxidant and detoxification processes (Luna-Acosta et al., 2017a). The activity of this 143 

enzyme was measured according to Luna-Acosta et al. (2010).The index of glycolysis 144 

gluconeogenesis pathway were determined with the pyruvate kinase activity (PK - EC 2.7.1.40) 145 

according to Childress and Somero (1979) as modified by Bailey et al. (2005). 146 

Acetylcholinesterase (ACHE - EC 3.1.1.7) is widely used to estimate neurotoxic impacts of 147 

pollutants, and its activity was assayed using Ellman et al. (1961)’s protocol. The total protein 148 

content was measured with the bicinchoninic acid protein assay kit (Sigma-Aldrich®) that is 149 

similar to the Lowry et al. (1951) procedure. Specific enzymatic activities were measured and 150 

expressed as U(μmol.min−1).mg−1 of protein. All activities measurements were done on a 151 

SpectroStar Nano spectrophotometer (BMG labtech, Champigny-sur-Marne, France) in 152 

technical duplicate for each sample, using standard methods adapted for a microplate reader. 153 

All chemicals were obtained from Sigma-Aldrich®.  154 

Statistical analyses were performed using R software version 4.2.0. Based on the analysed 155 

biomarkers (SOD, GST, LAC, PK and ACHE), data were organized by periods (4) and sites 156 

(4). Normality and homogeneity of variances were respectively verified by Shapiro and Levene 157 

tests. A series of observations were simulated according to mean values and standard deviation 158 

of each biomarker. Cofounding factors (two physicochemical water parameters:  temperature 159 

and salinity; and one biometric factor: shell length) and biomarker values of limpet collected in 160 

the reference location (STARESO) were used to determine formula describing the relationship 161 

between each biomarker and confounding factors (Press et al., 2007; Venables and Ripley, 162 

2013). The chosen cofactors were considered as the most relevant for the present study and are 163 

also often used in previous studies. Temperature and salinity were selected to consider the 164 

influence of environmental conditions (Almeida et al., 2022; Benito et al., 2019) and the shell 165 

length to consider the life stage of limpet. 166 
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Following this, pairwise analyses were conducted to identify which equation best described the 167 

relationship between each biomarker and the confounding factors. This established a 168 

polynomial regression formula. To address collinearity in the model, orthogonal polynomial 169 

regression was used to obtain new regression models with uncorrelated variables and achieved 170 

a final, stable polynomial regression equation for each biomarker: 171 

SOD (U.mg of protein-1) = 868.59 + 36.88 (length) − 0.98 (length)2 + 0.01(length)3 − 166.3 172 

(temperature) + 4.36 (temperature)2 + 4.17 (salinity) 173 

R2 = 0.62 174 

GST (mU.mg of protein-1) = − 831.56 + 636.66 (length) − 16.79 (length)2 + 0.15 (length)3 − 175 

934.04 (temperature) + 24.1 (temperature)2 + 42.1 (salinity) 176 

R2 = 0.53 177 

LAC (mU.mg of protein-1) = 1.8 + 0.01 (length) − 0.02 (temperature) − 0.03 (salinity) 178 

R2 = 0.31 179 

PK (mU.mg of protein-1) = 683.44 + 0.42 (length) − 0.77 (temperature) − 16.93 (salinity) 180 

R2 = 0.21 181 

ACHE (mU.mg of protein-1) = 75.71 − 0.03 (length) − 0.34 (temperature) − 1.61 (salinity) 182 

R2 = 0.24 183 

 184 

With these equations, the predicted values were calculated for the reference location. The 185 

residuals were obtained by subtracting the predicted values from the values obtained in the 186 

laboratory. Using k-means clustering (Barrick et al., 2016; Barrick et al., 2018), the residuals 187 

were classified into three groups that were used to determine the range of variations according 188 

to environmental conditions and to define the baseline level (Table 2).  189 

 190 

Table 2: Level of traffic light scheme (red: lethal effects expected, orange: sublethal effects 191 

expected, yellow: range expected on non-impacted sites, green: evidence of good health) used 192 
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to define the range of environmental effects. Y indicates the mean value for the reference site 193 

(STARESO). SOD (superoxide dismutase), GST (gluthathione-S-transferase), LAC (laccase 194 

type phenoloxidase), PK (pyruvate kinase), ACHE (acetylcholinesterase). 195 

Indicators SOD residuals GST residuals LAC residuals PK residuals ACHE residuals 

Green < y - 33.21 < y - 149.61 < y - 0.30 < y - 20.85 < y - 3.69 

Yellow 
[y - 33.21; y + 
83.68] 

[y - 149.61; y + 
320.25] 

[y - 0.30; y + 
0.20] 

[y - 20.85; y + 
13.21] 

[y - 3.69; y + 
2.36] 

Orange 
[y + 83.68; y + 
90.43] 

[y + 320.25; y + 
344.56] 

[y + 0.20; y + 
0.54] 

[y + 13.21; y + 
169.99] 

[y + 2.36; y + 
20.12] 

Red > y + 90.43 > y + 344.56 > y + 0.54 > y + 169.99 > y + 20.12 

 196 

The equations were then used to calculate the predicted value for each biomarker on each 197 

location. These values and the average biomarker activity for the reference location (black line) 198 

were graphically represented within the range of variation for each biomarker (Figure 2). The 199 

interpretation of the data should be taken with precaution, because statistical analyses 200 

considering maximum of variable is always complex to explain and error of interpretation can 201 

occur. However, for environmental studies, it is essential to consider the influence of 202 

environmental parameters with time and location. It is also essential to take into account 203 

morphometric parameter of the individual as they are often collected as wild in the environment.   204 

 205 

The model displayed the seasonal variations of the biomarker baseline. In general, the activity 206 

of the biomarkers is lower in winter. This winter decrease is consistent with previous studies 207 

results (Barbarin et al., 2022; Barrick et al., 2018; Storhaug et al., 2019) and could be explain 208 

by several factors. The lower temperatures in winter could induce a slower metabolism and 209 

subsequently lower enzymes activities. Seasonal variations in could also be related to the 210 

reproductive state of organisms as it was observed for mussels by Storhaug et al. (2019). Having 211 

more information on the seasonal variations of biomarkers could help to improve biomonitoring 212 

of specific environments such as ports areas. In the ports selected in the present study, the 213 

decrease observed in winter should be considered. It would be necessary to obtain a more 214 
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precise view of the variation along the year by collecting additional samples during the other 215 

period of the year and to do so for a longer period of time. After that, biomonitoring of the port 216 

area should be realized during months that are comparable to each other (with the same 217 

baseline) to observe the impact of pollution and not the natural variation of biomarkers. 218 

 219 

The results showed that the observed values for all the biomarkers are very close to the value 220 

observed for the reference site (STARESO) and fell within the green or yellow ranges, showing 221 

either evidence of good health or unimpacted organisms (Figure 2). For PK and ACHE, the 222 

values predicted by the model were also really close to the observed values. This reflects good 223 

predictions of the model for these two biomarkers. The only exceptions for PK and ACHE are 224 

the values predicted at St-Florent in January 2021. This value is much higher than the other 225 

ones and fell between the orange range where sublethal effects are expected. For the SOD, GST 226 

and LAC, the observed values also fell pretty close to the value observed for the reference site, 227 

so it is still a good sign for the ecological status of the organisms in North Corsica ports. 228 

However, the difference between observed and predicted values are more important for these 229 

three biomarkers. Despite this difference, the observed value fell most of the time within the 230 

yellow range where no impacts should be detected on organism. In January 2021, the predicted 231 

values for LAC in St-Florent and GST in Île Rousse are the exceptions, falling respectively in 232 

the orange (sublethal effects expected) and red range (lethal effects expected). The difference 233 

between observed and predicted values for SOD, GST and LAC is slightly more important in 234 

winter, especially in January 2021. 235 
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 236 

Figure 2 Graphical representation of health indicator (red: lethal effects expected, orange: sublethal effects expected, yellow: range expected on 237 

non-impacted sites, green: evidence of good health) for superoxide dismutase, gluthathione-S-transferase, laccase type phenoloxidase, pyruvate 238 

kinase and acetylcholinesterase in STARESO (refence location), Calvi, Île Rousse and St Florent. For each location, the observed and predicted 239 

(from the equations defined in the present study) values are respectively represented by circles and triangles. The black line represents the 240 

observed value for the reference location (STARESO).  241 
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The statistical model works pretty well. For most of the data and especially for PK and ACHE, 242 

the predicted values are consistent with the observed ones. These results confirm that the 243 

equations of the model were correctly selected. However, the model still needs some 244 

improvements for the SOD, LAC and GST, and this is especially true for the winter periods 245 

(2021 and 2022) and the St-Florent port. The different results between the observed values and 246 

the model predictions could be explained by several possibilities. The choice of cofounding 247 

factors incorporated into the model can influence the results. The environmental factors 248 

included in the present model are the most common in similar studies (Barbarin et al., 2022; 249 

Barrick et al., 2016; Barrick et al., 2018) but can also change to a more or less extent from one 250 

year to another. However, further investigations are necessary to identify what else can 251 

influence the biomarkers values (nutrient availability, reproductive status, life stage, light, 252 

presence of contaminants, etc.) (Barrick et al., 2016; Barrick et al., 2018). For example, St-253 

Florent port is characterized by the presence of the Aliso River mouth. A higher input of 254 

freshwater in this port probably has an influence on the biomarker responses and should be 255 

taken into consideration in a future model.  256 

Additional factors could be easily incorporated into the model but it will be necessary to 257 

evaluate the covariation between these factors. This can be rather difficult as some of these can 258 

be strongly linked (e.g. nutrient availability and light, life stage and weight, etc.) (Barrick et al., 259 

2018). Once the characterization of the cofactor’s correlation included into the model, it can be 260 

used discrimination between cofounding factors and to identify the impacts of contaminants. 261 

For futures studies and to improve the precision of the model, it will be important to collect 262 

more organisms to increase the number of samples and to run the analysis for a longer time 263 

period to consider the variations between years. 264 

 265 
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The objective of this study was to design a baseline level for biomarkers that account for 266 

cofounding factors. By providing more data on the ecological status of port areas, the 267 

development of this model for limpets will help the implementation of biomonitoring 268 

environmental program in North Corsica ports. Already developed for ragworms (Barrick et 269 

al., 2016; Barrick et al., 2018), bivalve (Barbarin et al., 2022; Storhaug et al., 2019) or fish 270 

(Baudou et al., 2021), this kind of statistical approach provide a better understanding of the 271 

biomarkers responses. The present study is the first to develop this model on limpet. It also 272 

brings more data for the use of this specie in biomonitoring program, as it was shown to be a 273 

promising bioindicator in previous studies (Mbandzi et al., 2022; Pérez et al., 2019; Sánchez-274 

Marín et al., 2022). 275 

 276 

  277 
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Fig. 1 Map of the experimental locations in North Corsica (France) 491 

 492 

Fig. 2 Graphical representation of health indicator (red: lethal effects expected, orange: 493 

sublethal effects expected, yellow: range expected on non-impacted sites, green: evidence of 494 

good health) for superoxide dismutase, gluthathione-S-transferase, laccase type phenoloxidase, 495 

pyruvate kinase and acetylcholinesterase in STARESO (refence location), Calvi, Île Rousse 496 

and St Florent. For each location, the observed and predicted (from the equations defined in the 497 

present study) values are respectively represented by circles and triangles. The black line 498 

represents the observed value for the reference location (STARESO).  499 
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